
Paxter

Abhabongse Janthong

Jul 22, 2020

CONTENTS

1 Contents 3

2 Indices and tables 23

Index 25

i

ii

Paxter

Paxter is a document-first, text pre-processing mini-language toolchain, loosely inspired by @-expressions in Racket.

• The Paxter library package defines the syntax for Paxter language and provides a toolchain for parsing input
texts written in Paxter language into an intermediate parsed tree.

• However, the semantics of Paxter language is left unspecified, meaning that users of the library have all the
freedom to do whatever they like to render or transform the intermediate parsed tree into a final output they wish
to achieve.

• Alternatively, instead of implementing an interpreter for intermediate parsed tree by themselves, users may
opt-in to utilize a preset parsed tree renderers, also provided by this library package.

CONTENTS 1

https://docs.racket-lang.org/scribble/reader.html

Paxter

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Getting Started

1.1.1 Installation

Paxter language package can be installed from PyPI via pip command (or any other methods of your choice):

$ pip install paxter

1.1.2 Programmatic Usage

This package is mainly intended to be utilized as a library. To get started, let’s assume that we have a document source
text written using Paxter language syntax.

Of course, input text of a document may be read from any source,
such as from a text file loaded from the filesystem, from user input, etc.

source_text = """\
@python##"

from datetime import datetime

name = "Ashley"
year_of_birth = 1987
current_age = datetime.now().year - year_of_birth

"##\\
My name is @name and my current age is @current_age.
My shop opens Monday@,-@,Friday.
"""

Note: Learn more about Paxter language grammar and features.

3

Paxter

Parsing

First and foremost, we use a parser (implemented by the class ParseContext) to transform the source input into
an intermediate parsed tree.

from paxter.core import ParseContext

parsed_tree = ParseContext(source_text).tree

Note: We can see the structure of the parsed tree in full by printing out its content as shown below (output reformatted
for clarify).

>>> parsed_tree
FragmentList(

start_pos=0,
end_pos=236,
children=[

Command(
start_pos=1,
end_pos=148,
starter="python",
starter_enclosing=EnclosingPattern(left="", right=""),
option=None,
main_arg=Text(

start_pos=10,
end_pos=145,
inner='\n from datetime import datetime\n\n name = "Ashley"\n

→˓ year_of_birth = 1987\n current_age = datetime.now().year - year_of_birth\n',
enclosing=EnclosingPattern(left='##"', right='"##'),

),
),
Text(

start_pos=148,
end_pos=161,
inner="\\\nMy name is ",
enclosing=EnclosingPattern(left="", right=""),

),
Command(

start_pos=162,
end_pos=166,
starter="name",
starter_enclosing=EnclosingPattern(left="", right=""),
option=None,
main_arg=None,

),
Text(

start_pos=166,
end_pos=189,
inner=" and my current age is ",
enclosing=EnclosingPattern(left="", right=""),

),
Command(

start_pos=190,
end_pos=201,
starter="current_age",
starter_enclosing=EnclosingPattern(left="", right=""),
option=None,
main_arg=None,

(continues on next page)

4 Chapter 1. Contents

Paxter

(continued from previous page)

),
Text(

start_pos=201,
end_pos=223,
inner=".\nMy shop opens Monday",
enclosing=EnclosingPattern(left="", right=""),

),
SymbolCommand(start_pos=224, end_pos=225, symbol=","),
Text(

start_pos=225,
end_pos=226,
inner="-",
enclosing=EnclosingPattern(left="", right=""),

),
SymbolCommand(start_pos=227, end_pos=228, symbol=","),
Text(

start_pos=228,
end_pos=236,
inner="Friday.\n",
enclosing=EnclosingPattern(left="", right=""),

),
],
enclosing=GlobalEnclosingPattern(),

)

Notice how the source text above also contains what seems like a Python code. This has nothing to do with Paxter
core grammar in any way; it simply uses the Paxter command syntax to embed Python code to which we will give a
meaningful interpretation later.

Rendering

Next step, we use a built-in renderer to transform the intermediate parsed tree into its final output. It is important to
remember that the semantics of the documents depends on which renderer we are choosing.

We will adopt the Python authoring mode whose renderer (implemented by RenderContext) is already pre-
defined by the Paxter library package to transform the parsed tree into the desired final form. One of its very useful
features is that it will execute python code under the @python command.

from paxter.pyauthor import RenderContext, create_unsafe_env

This dictionary data represents the initial global dict state
for the interpretation the document tree in python authoring mode.
env = create_unsafe_env({

'_symbols_': {',': ' '},
})

result = RenderContext(source_text, env, parsed_tree).rendered
print(result) # or write to a file, etc.

The above code will output the following.

My name is Ashley and my current age is 33.
My shop opens Monday - Friday.

1.1. Getting Started 5

Paxter

Note: Learn more about how to use Python authoring mode and how to write custom renderer.

Create your own function

We recommend Paxter library users to by themselves write a utility function to connect all of the toolchains provided
Paxter package. This is the minimal example of a function to get you started.

from paxter.core import ParseContext
from paxter.pyauthor import RenderContext, create_unsafe_env

def interp(source_text: str) -> str:
parsed_tree = ParseContext(source_text).tree
result = RenderContext(source_text, create_unsafe_env(), tree).rendered
return result

1.1.3 Command-Line Usage

As a shortcut, Paxter library package also provided some utilities via command-line program. To get started, red the
help message using the following command:

$ paxter --help

To play around with the parser, you may use parse subcommand with an input. Suppose that we have the following
input file.

$ cat intro.paxter
@python##"

from datetime import datetime

symbols = {
',': ' ',

}
name = "Ashley"
year_of_birth = 1987
current_age = datetime.now().year - year_of_birth

"##\
My name is @name and my current age is @current_age.
My shop opens Monday@,-@,Friday.

Then we can see the intermediate parsed tree using this command:

$ paxter parse -i intro.paxter

If we wish to also render the document written in Paxter language under the Python authoring mode with the default
environment, then use the following command:

$ paxter pyauthor -i intro.paxter -o result.txt
$ cat result.txt
My name is Ashley and my current age is 33.
My shop opens Monday - Friday.

6 Chapter 1. Contents

Paxter

However, this command-line option does not provide a lot of flexibility. So we recommend users to dig deeper with
a more programmatic usage. It may require a lot of time and effort to setup the entire toolchain, but it will definitely
pay off in the long run.

1.2 Paxter Language Tutorial

Note: This is a tutotrial for bare Paxter language specification. It discusses only the basic Paxter syntax without any
associated semantics as the semantics to the intermediate parsed tree is generally given by users of Paxter library.

For a simpler usage of Paxter library package, please also see Python authoring mode tutorial page.

Paxter syntax is very simple. In most cases, a typical text is a valid Paxter document, like in the following:

Hello, World!
My name is Ashley, and I am 33 years old.

However, Paxter provides a special syntax called @-expressions (pronounced “at expressions”) so that richer informa-
tion may be inserted into the document. There are 2 kinds of @-expressions, all of which begins with an @-symbol:
a command and a short symbol expression.

This @-symbol (codepoint U+0040) is sometimes called a switch because it indicates the beginning of an @-
expression, and whatever follows the switch determines which kind of @-expression it is.

Next, we dive into each kind of @-expressions.

Note: Consult Syntax Reference for a more detailed Paxter language grammar specification.

1.2.1 1. Command

A command is the most powerful syntax in Paxter language. It consists of the following 3 sections of information:

"@" starter [option] [main_argument]

Among these 3 sections, only the starter section is mandatory; the other 2 sections are optional and can be omitted.
Additionally, there should not be any whitespace characters separating between the switch and the starter section, nor
between different sections of the same command.

Starter section

A starter of a command may contain any textual content, surrounded by a pair of bars | (U+007C).

Here are examples of a valid command with only the starter section.

@|foo|
@|_create|
@||
@|foo.bar|
@|1 + 1|
@|Hello, World!|

1.2. Paxter Language Tutorial 7

Paxter

However, if the content of the starter section takes the form of a valid Python identifier, then the pair of bars may be
dropped. So the first 3 examples from above may be rewritten as follows:

@foo
@_create
@

On the other hand, the textual content of the starter may sometimes contain a bar as part of itself (such as x || y
|| z). Then we may additionally surround the matching pair of bars with an equal number of hashes # (U+0023):

@#|x || y || z|#
@###|x || y || z|###

But the following example will not work as expected:

@|x || y || z| is a command whose starter content contains exactly just “x ”
followed by regular text “| y || z|”.

Obviously, if the starter section begins with n hashes followed by a bar, then the textual content itself cannot contain
a bar followed by n or more hashes (otherwise, the starter section would have terminated earlier).

@##|good|#|one|##
@##|bad|##|one|##

In this example (shown above), the starter of the first command is good|#|boy whereas that of the other command
cuts short at bad (followed by the text |one|##).

Note: In a sense, this bar pattern (by which we mean the pattern of surrounding some content with a pair of bars plus
an equal number of hashes on both ends) will be parsed non-greedily (i.e. the parsing of the starter halts as soon as
the closing pattern corresponding to the opening pattern encountered earlier is found).

Main argument section

Let’s skip the option section for now and discuss the main argument section of a command first.

As the name suggests, the main argument section of a command contains the most important piece of information
to which the command is applied. The main argument can be supplied in one of 2 modes: the fragment list mode
(in which the content is wrapped within the brace pattern) and the text mode (i.e. the content is wrapped within the
quoted pattern).

(a) Wrapped fragment list mode

For a fragment list mode as the main argument, the content may contain texts as well as any nested @-expressions.

The content itself must be surrounded by a pair of curly braces (U+007B and U+007D) called the brace pattern (in
analogous to the bar pattern associated with the starter section of a command). Of course, additionally appending the
equal number of hashes to both ends are allowed.

For example,

@foo{Hello, @name}
@|font.large|{BUY ONE GET ONE FREE!}
@highlight##{A set of natural numbers: {0, 1, 2, 3, ...}.}##.

8 Chapter 1. Contents

Paxter

Similarly to the bar pattern from the starter section of a command, if the wrapped fragment list begins with n hashes
followed by a left curly brace, then the immediate inner textual content may not contain a right curly brace followed
by n or more hashes.

In the following example, the outermost command has the starter foo and its main argument is in fact
@bar{1###}###. That is because (1) the curly braces pair surrounding 1### (marked with “^”) match with each
other, and thus (2) the succeeding 3 hashes are not associated with the marked closing curly brace.

@foo###{@bar{1###}###}###
^ ^

(b) Wrapped text mode

Wrapped texts are somewhat similar to wrapped fragment lists, except for 2 major aspects:

• Instead of using a matching pair of curly braces surrounding the inner content, wrapped texts use a pair of
quotation marks (U+0022). This is called the quoted pattern in analogous to the brace pattern for wrapped
fragment lists.

• All @-symbol characters within the textual content will not be interpreted as the switch for @-expressions.
Hence, wrapped texts would not contain any nested @-expressions.

This mode of main argument is useful especially when we expect the inner content of the main argument to be from
another domain where @-symbols are prevalent.

For example, when you want to embed source code from another language:

@python_highlight##"

Results of the following function is cached
depending on its input
from functools import lru_cache

@lru_cache(maxsize=None)
def add(x, y):

"""Adding function with caching."""
return x + y

"##

Again, if the inner content needs to contain a quotation mark, we may add an equal number of hashes to both ends:

@alert#"Submit your feedback to "ashley@example.com"."#

Option section

The existence of a left square bracket immediately after the starter section of a command always indicates the be-
ginning of the option section. The option section itself is a sequence of tokens where each token can be one of the
following:

• Another @-expression of any kind

• An identifier (according to Python grammar)

• An operator which can be a single comma, a single semicolon, or a combination of all other symbol characters
(excluding hashes, quotation marks, curly braces, and square brackets)

• A number whose syntactical form adheres to JSON grammar for number literal

1.2. Paxter Language Tutorial 9

Paxter

• A fragment list wrapped within the brace pattern (which shares the same syntax as already discussed in the
main argument section)

• A text wrapped within the quoted pattern (which shares the same syntax as already discussed in the main
argument section)

• A nested sequence of tokens itself, surrounded by a matching pair of square brackets (U+005B and U+005D).

Warning: Please note that inside the option section of a command is the only place in Paxter language where
whitespace characters between tokens are ignored.

Here are a couple of examples of commands which include the option section:

• For the command @foo[x="bar", y=2.5, z={me}]{text}, its option section contains a sequence of
11 tokens:

1. an identifier x

2. an equal sign operator =

3. a text token bar

4. a comma operator ,

5. an identifier y

6. an equal sign operator =

7. the number literal 2.5

8. a comma operator ,

9. an identifier z

10. an equal sign operator =, and

11. a fragment list containing the text me

• For the command @|foo.bar|[x <- [2]; @baz], its option section contains a sequence of 5 tokens:

1. an identifier x

2. a left arrow operator <-

3. a nested sequence containing the number literal 2 as the only token within it

4. a semicolon operator ;, and

5. a nested command with baz as the starter section and with all other sections omitted.

Paxter language syntax gives a lot of freedom for what is allowed within the option section of a command; a
programmer-write who writes a renderer to transform Paxter intermediate parsed trees into data of another form has a
liberty to add whatever constraints to the syntactical structure within the option section.

10 Chapter 1. Contents

Paxter

1.2.2 2. Single Symbol Expression

This kind of @-expression is in the form of a single symbol character immediately following the @-symbol switch.
This single symbol character will be the sole content of the single symbol expression.

For example,

There is free food today between 3@,-@,5 PM.

Warning: If @# happens to be the prefix of a full-form @-expressions (such as in @#|foo|#), then @# by itself
is not a valid command in special form. It must be unambiguously not part of full-form command for itself to
become a valid command of special form.

1.2.3 Escaping @-Symbol Switches

Paxter language does not provide any syntax to escape @-symbol switches of @-expressions. We recommend the
library user solve this kind of problem at the interpreter/renderer level instead.

One way to do this is to define the behavior of @@ (a single symbol expression with @ symbol following the switch) to
be transformed into a single @ symbol in the rendered output.

My email is ashley@@example.com.

Another method to work around this problem is to introduce a command called verbatim (inspired by the command
of the same name in LaTeX) which will output the main input argument as-is.

My email is @verbatim"ashley@example.com".

1.3 Python Authoring Mode Tutorial

1.3.1 Block Python Code Execution

In Python authoring mode, Python source code may be embedded into the document for execution using python
command syntax with the code as the main argument. For example,

@python##"
name = "Ashley"

"##

In the example document above, once the Python code in the preamble is executed, the value of the variable name
will be available in the environment for the rest of the document.

1.3. Python Authoring Mode Tutorial 11

Paxter

Referring to variable from Python code

One way to referring to the value of the variable name is to use the command syntax @name without any options or
main arguments sections. So the following document

@python##"
name = "Ashley"

"##
Hi, @name.

will be rendered into

Hi, Ashley.

Remove unwanted newlines

Notice how the newline character was preserved in the above output. If we wish to remove that newline character, we
may put a backslash at the end of that line. So the following document

@python##"
name = "Ashley"

"##\
Hi, @name.

yields the following output in Python authoring mode

Hi, Ashley.

Referring to functions from Python code

We may also define Python functions within the embedded Python source code and refer to them later in the document.
The syntax to make a call to a function already defined is a command syntax with the main argument supplied. Here
is one example,

@python##"
def surround(text):

return "(" + flatten(text) + ")"
"##\
This is @surround{sound}.

which will return

This is (sound).

The reason why we need to flatten the main argument first is that the fragment list (i.e. the part surrounded by a
matching pair of curly braces) returns a list of string tokens (not the string itself), hence it is important to flatten them
into a single string first (otherwise an error would have occurred).

12 Chapter 1. Contents

Paxter

Python functions with multiple arguments

When there is more than one argument to the function, the main argument of the command will always be the first
argument of the function, and the rest of the function arguments can be supplied to option section of the command
(similarly to Python function call syntax):

@python##"
def surround(text, n, left='(', right=')'):

return flatten(left) * n + flatten(text) + flatten(right) * n
"##\
This is @surround[3]{sound}.
This is @surround[n=3]{sound}.
This is @surround[3, "[", "]"]{sound}.
This is @surround[3, right=""]{sound}.
This is @surround[n=3, left="_", right="_"]{sound}.

Here is the result.

This is (((sound))).
This is (((sound))).
This is [[[sound]]].
This is (((sound.
This is ___sound___.

Notice that we use wrapped text inside the option section in order to supply strings as arguments to the function
surround.

Additionally, we may also omit the main argument section, and then the entire option section will all be the arguments
to the function:

@python##"
def surround(text, n, left='(', right=')'):

return flatten(left) * n + flatten(text) + flatten(right) * n
"##\
This is @surround["sound",3].
This is @surround["sound",n=3].

The above document will be rendered into

This is (((sound))).
This is (((sound))).

1.3.2 Inline Python Code Evaluation

We may wish to insert the result of the evaluation of Python expression. We can do so by using the command syntax
with the bar pattern @|...|:

The result of 7 × 11 × 13 is @|7 * 11 * 13|.

and that would be transformed into

The result of 7 × 11 × 13 is 1001.

1.3. Python Authoring Mode Tutorial 13

Paxter

Inline Python code with function call

If a function behind an attribute or key lookup, we may use the bar pattern in conjunction with main arguments and/or
options.

@python##"
import statistics
values = [2, 3, 5, 7]
funcs = {

'median': statistics.median
}

"##\
The average of first 4 primes is @|statistics.mean|[@values].
The median of first 4 primes is @|funcs['median']|[@values].

The above document returns the following.

The average of first 4 primes is 4.25.
The median of first 4 primes is 4.0.

1.3.3 Special Symbol Commands

For the sake of simplicity, we provide an easy way to perform text replacements for symbol-style commands. Simply
define a dictionary mapping from each symbol to the substituting results under the variable _symbol_ inside the
Python source code.

@python##"
symbols = {

'.': ' ',
',': ' ',
'@': '@',

}
"##\
My email is ashley@@example.com.
My office hours is between 7@.-@.9 PM.

Here is the result of the above document.

My email is ashley@example.com.
My office hours is between 7 - 9 PM.

1.3.4 Special Commands: For and If

For statements within the document for Python authoring mode has the following format

@for[<IDENTIFIER> in <EXPRESSION>]{<BODY>}

whereas if statements has the 3 following formats

@if[<CONDITIONAL>]{<BODY>}
@if[not <CONDITIONAL>]{<BODY>}
@if[<CONDITIONAL> then <THEN_BODY> else <ELSE_BODY>]

Here is the document that illustrates how to use these special commands:

14 Chapter 1. Contents

Paxter

@python##"
def is_odd(value):

return value % 2 == 1
"##\
Odd digits are @flatten{@for[i in @|range(10)|]{@if[@|is_odd(i)|]{ @i}}}.
Even digits are @flatten{@for[i in @|range(10)|]{@if[not @|is_odd(i)|]{ @i}}}.
Digits are @flatten{@for[i in @|range(10)|]{@if[@|is_odd(i)| then " odd" else " even
→˓"]}} in this order.

and the result would be

Odd digits are 1 3 5 7 9.
Even digits are 0 2 4 6 8.
Digits are even odd even odd even odd even odd even odd in this order.

1.3.5 API Reference

The following class implements a standard parser which comes with Paxter package library.

The following function creates a pre-defined unsafe Python environment dictionary to be used with the rendering
context class.

Here are the functions readily available within the default environment from the function above

paxter.pyauthor.funcs.flatten(data, is_joined: bool = True)→ Union[List[str], str]
Flattens the nested list of elements by unrolling them into a single list. Unless the is_joined option is
disabled, all elements will be combined to a single string.

>>> flatten(["Hello", ",", " ", "World", "!"])
"Hello, World!"
>>> flatten(["Hello", [",", " "], ["World"], "!"])
"Hello, World!"
>>> flatten(["Hello", [",", " "], ["World"], "!"], is_joined=False)
["Hello", ",", " ", "World", "!"]
>>> flatten("Hello, World!")
"Hello, World!"
>>> flatten("Hello, World!", is_joined=False)
["Hello, World!"]

paxter.pyauthor.funcs.verb(text: Any)→ str
Returns the main string argument as-is.

>>> verb("Hello")
"Hello"
>>> verb("me@example.com")
"me@example.com"

1.3. Python Authoring Mode Tutorial 15

Paxter

1.4 Custom Renderer Tutorial

Todo: Tutorial is coming soon.

1.5 Syntax Reference

Below are syntax diagrams for Paxter language.

• Document: Starting rule of Paxter language grammar. It is a special case of FragmentList rule, and thus
the result is always a FragmentList node whose children are non-empty Text interleaving with the result
produced by AtExpression rule.

• AtExpression: Rule for parsing right after encountering @-switch symbol.

Note: The red else box in this diagram indicates that such path can be followed only if the next token does
not match any other possible paths. Pursuing this else path does not consume anything.

16 Chapter 1. Contents

Paxter

There are 2 possible scenarios.

1. A normal Command node consisting of 3 sections: starter, options, and main argument, respectively.

The starter section is resulted from parsing either greedily for an identifier or non-greedily for a text
enclosed by a pair of bars plus and an equal number of zero or more hashes at both ends.

Following the starter section, if a left square bracket is found, then the option section as a list of tokens
must be parsed and it will result in a TokenList node. Otherwise (if the left square bracket is absent),
this option section will be represented by None.

Finally, the main argument section. (a) If there is zero or more hashes followed by a left brace, then the
FragmentList parse rule must be followed and thus yields FragmentList as the result.

Warning: There is a restriction imposed on parsing the FragmentList rule, which is that the child
text node may not contain a right brace followed by the same number of hashes as the preceding part.
Otherwise, the parsing of FragmentList rule would have terminated earlier.

However, (b) if there is zero or more hashes followed by a quotation mark, then the text is parsed non-
greedily until the another quotation mark followed by the same number of hashes is found.

Well, if both conditions (a) and (b) do not hold, then the main argument would be None.

2. A special SingleSymbol node where a single symbol follows the @-switch.

• FragmentList: Consists of an interleaving of non-empty texts and results produced by AtExpression rule.

Note that the parsing of AtExpression rule at the previous level may put some restriction on the parsing of
Text nodes. For example, if preceding the fragment list is an opening brace pattern ###{, then each Text
node may contain }###.

In other words, we non-greedily parses text within the fragment list.

• TokenList: A sequence of zero or more tokens Each token either a command, an identifier, an operator, a
number following JSON specification, a wrapped fragment list, a wrapped text, or a nested token list enclosed
by a pair of square brackets []. The result is a TokenList node type.

1.5. Syntax Reference 17

Paxter

Note: The option section (or the token list) is the only place where whitespaces are ignored (when they appear
between tokens).

• Identifier: Generally follows Python rules for greedily parsing an identifier token (with some extreme excep-
tions). The result is an Identifier node type.

• Operator: Greedily consumes as many operator character as possible (with two notable exceptions: a comma
and a semicolon, which has to appear on their own). A whitespace may be needed to separate two consecutive,
multi-character operator tokens. The result is an Operator node type.

18 Chapter 1. Contents

Paxter

1.6 Core API Reference

Paxter language package provides the following core functionality.

1.6.1 Parsing

This class implements the parser for Paxter language.

class paxter.core.ParseContext(input_text: str)
Implements a recursive descent parser for Paxter language text input.

To utilize this class, provide the input text to the constructor, and the resulting parsed tree node will be generated
upon instantiation.

input_text: str
Document source text

tree: FragmentList
Root node of the parsed tree

1.6.2 Data Definitions

The result of the parsing yields the parsed tree consisting of the following classes.

class paxter.core.Token(start_pos: int, end_pos: int)
Base class for all types of nodes to appear in Paxter document tree.

end_pos: int
The index right after the ending position of the token

start_pos: int
The index of the starting position of the token

class paxter.core.Fragment(start_pos: int, end_pos: int)
Bases: paxter.core.data.Token

Subtypes of nodes in Paxter document tree that is allowed to appear as direct members of FragmentList.

class paxter.core.TokenList(start_pos: int, end_pos: int, children: List[paxter.core.data.Token])
Bases: paxter.core.data.Token

Node type which represents a sequence of tokens wrapped under a matching pair of brackets [], all of which
appears only within the option section of Command.

children: List[Token]
List of Token instances

class paxter.core.Identifier(start_pos: int, end_pos: int, name: str)
Bases: paxter.core.data.Token

Node type which represents an identifier, which can appear only within the option section of Command.

name: str
Identifier string name

class paxter.core.Operator(start_pos: int, end_pos: int, symbols: str)
Bases: paxter.core.data.Token

Node type which represents an operator, which can appear only within the option section of Command.

1.6. Core API Reference 19

Paxter

symbols: str
Symbol as a string of characters

class paxter.core.Number(start_pos: int, end_pos: int, value: Union[int, float])
Bases: paxter.core.data.Token

Node type which represents a number recognized by JSON grammar, which can appear only within the option
section of Command.

value: Union[int, float]
Numerical value deserialized from the number literal

class paxter.core.FragmentList(start_pos: int, end_pos: int, children:
List[paxter.core.data.Fragment], enclosing: pax-
ter.core.enclosing.EnclosingPattern)

Bases: paxter.core.data.Token

Special intermediate node maintaining a list of fragment children nodes. Nodes of this type usually correspond
to either the global-level fragments or fragments nested within enclosing brace pattern.

The enclosing brace pattern may appear as the main argument of a Command node or as a token within the
option section of a Command node.

children: List[Fragment]
List of Fragment instances

enclosing: EnclosingPattern
Information of the enclosing braces pattern

class paxter.core.Text(start_pos: int, end_pos: int, inner: str, enclosing: pax-
ter.core.enclosing.EnclosingPattern)

Bases: paxter.core.data.Fragment

Text node type which does not contain nested @-expressions. Nodes of this type usually be presented as an
element of FragmentList or as text wrapped within enclosing quoted pattern.

The enclosing quote pattern may appear as the main argument of a Command node, as a token within the option
section of a Command node, or as a fragment element of a FragmentList node.

enclosing: EnclosingPattern
Information of the enclosing quote pattern

inner: str
Inner string content

class paxter.core.Command(start_pos: int, end_pos: int, starter: str, starter_enclosing:
paxter.core.enclosing.EnclosingPattern, option: Op-
tional[paxter.core.data.TokenList], main_arg: Op-
tional[Union[FragmentList, Text]])

Bases: paxter.core.data.Fragment

Node type representing @-expression which has the following form:

• It begins with an @ switch character.

• Then, it is immediately followed by a section called a starter which is simply a string in valid Python
identifier form or a string surrounded by enclosing bar pattern: |...|.

• Next, it may optionally be followed by an option section which is a sequence of Token nodes.

• Finally, it may optionally be followed by a main argument section which can either be a FragmentList
or a Text.

20 Chapter 1. Contents

Paxter

main_arg: Optional[MainArgument]
The main argument section at the end of expression, or None if this section is not present.

option: Optional[TokenList]
A list of tokens for the option section enclosed by [], or None if this section is not present.

starter: str
Command starter section

starter_enclosing: EnclosingPattern
Information of the enclosing bar pattern over the starter section

1.6.3 Exceptions

Here are the list of exceptions raised from this library.

class paxter.core.exceptions.PaxterBaseException(message: str, **positions: pax-
ter.core.charloc.CharLoc)

Bases: Exception

Base exception specific to Paxter language ecosystem.

message: str
Error message

positions: Dict[str, CharLoc]
A mapping from position name to LineCol position data

class paxter.core.exceptions.PaxterConfigError(message: str, **positions: pax-
ter.core.charloc.CharLoc)

Bases: paxter.core.exceptions.PaxterBaseException

Exception for configuration error.

class paxter.core.exceptions.PaxterSyntaxError(message: str, **positions: pax-
ter.core.charloc.CharLoc)

Bases: paxter.core.exceptions.PaxterBaseException

Exception for syntax error raised while parsing input text in Paxter language. Positional index parameters
indicates a mapping from position name to its indexing inside the input text.

class paxter.core.exceptions.PaxterRenderError(message: str, **positions: pax-
ter.core.charloc.CharLoc)

Bases: paxter.core.exceptions.PaxterBaseException

Exception for parsed tree transformation error.

1.6.4 Other Utility Classes

Classes in this subsection is for reference only.

class paxter.core.EnclosingPattern(left: str, right: str = None)
Information regarding the enclosing (left and right) patterns for a particular scope of string data.

left: str
The left (i.e. opening) pattern enclosing the scope

right: str = None
The right (i.e. closing) pattern enclosing the scope

class paxter.core.GlobalEnclosingPattern
Specialized scope pattern just for global-level fragment list.

1.6. Core API Reference 21

Paxter

class paxter.core.CharLoc(input_text: dataclasses.InitVar, pos: dataclasses.InitVar)
The position (starting or ending) of a token within the input text useful for line and column information in error
messages.

col: int
1-index column index value

line: int
1-index line number

22 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• search

23

Paxter

24 Chapter 2. Indices and tables

INDEX

C
CharLoc (class in paxter.core), 21
children (paxter.core.FragmentList attribute), 20
children (paxter.core.TokenList attribute), 19
col (paxter.core.CharLoc attribute), 22
Command (class in paxter.core), 20

E
enclosing (paxter.core.FragmentList attribute), 20
enclosing (paxter.core.Text attribute), 20
EnclosingPattern (class in paxter.core), 21
end_pos (paxter.core.Token attribute), 19

F
flatten() (in module paxter.pyauthor.funcs), 15
Fragment (class in paxter.core), 19
FragmentList (class in paxter.core), 20

G
GlobalEnclosingPattern (class in paxter.core),

21

I
Identifier (class in paxter.core), 19
inner (paxter.core.Text attribute), 20
input_text (paxter.core.ParseContext attribute), 19

L
left (paxter.core.EnclosingPattern attribute), 21
line (paxter.core.CharLoc attribute), 22

M
main_arg (paxter.core.Command attribute), 20
message (paxter.core.exceptions.PaxterBaseException

attribute), 21

N
name (paxter.core.Identifier attribute), 19
Number (class in paxter.core), 20

O
Operator (class in paxter.core), 19

option (paxter.core.Command attribute), 21

P
ParseContext (class in paxter.core), 19
PaxterBaseException (class in pax-

ter.core.exceptions), 21
PaxterConfigError (class in pax-

ter.core.exceptions), 21
PaxterRenderError (class in pax-

ter.core.exceptions), 21
PaxterSyntaxError (class in pax-

ter.core.exceptions), 21
positions (paxter.core.exceptions.PaxterBaseException

attribute), 21

R
right (paxter.core.EnclosingPattern attribute), 21

S
start_pos (paxter.core.Token attribute), 19
starter (paxter.core.Command attribute), 21
starter_enclosing (paxter.core.Command at-

tribute), 21
symbols (paxter.core.Operator attribute), 19

T
Text (class in paxter.core), 20
Token (class in paxter.core), 19
TokenList (class in paxter.core), 19
tree (paxter.core.ParseContext attribute), 19

V
value (paxter.core.Number attribute), 20
verb() (in module paxter.pyauthor.funcs), 15

25

	Contents
	Indices and tables
	Index

