

Paxter Documentation

Paxter language helps users write rich-formatting documents
with simple and easy-to-understand syntax.
Nevertheless, users still have access to the python environment:
they can call python functions and evaluate python expressions
right inside the document itself,
giving users flexibility and power to customize
their approach to writing documents.

Paxter package is a document-first, text processing language toolchain,
inspired by @-expressions in Racket [https://docs.racket-lang.org/scribble/reader.html].
Users of the package also has the access to the Paxter language parser API
which allows them to implement new interpreters on top of the Paxter language
if they so wish.

Site Contents

Beginner Tutorials

	Getting Started
	Installation

	Writing The First Blog Entry

	Quick Blogging
	Command: A Basic Building Block

	Bolds, Italics, and Underline

	Monospaced Code

	Multiple Paragraphs

	Headings

	Blockquote

	Links and Images

	Lists

	Tables

	Raw HTML

	Evaluation Cycle Explained
	Step 1: Parsing Source Text

	Step 2: Evaluating Parsed Tree Into Document Object

	Step 3: Rendering Document Object

	Interpreting Python Code
	Executing Python Statements

	Evaluating Python Expressions

	Disable Python Environment (Demo)

	Escaping Mechanisms
	Escaping ‘@’

	Escaping Delimiters: Curly Braces, Quotes, and Bars

	Dive Into Command Syntax

	Codeblock Syntax Highlight (Demo)

Intermediate Tutorials

	Under Construction

API References

	Core API Reference

	Authoring API Reference

	Syntax Reference

Legacy Documentation

	Getting Started

	Paxter Language Tutorial

	Python Authoring Mode Tutorial

Indices and tables

	Index

	Search Page

Getting Started

Installation

Paxter python package can be installed from PyPI via the following pip command.
Of course, we can also opt for other methods of python package managements.

$ pip install paxter

Next, let’s write a basic blog entry.

Writing The First Blog Entry

Suppose that we are going to write a blog post
under Paxter language syntax as shown in the following.
Let’s ignore the specific details about the syntax for now
as we will discuss them further on the next page.

@h1{New Blog!}

Welcome to our new blog website.
@italic{Please keep watching this space for content.}

The above content is expected to be rendered into the following result.

 New Blog!

 Welcome to our new blog website.
 Please keep watching this space for content.

Here are a few ways that we can transform the original Paxter source code
into the final HTML output.

Method 1: Command Line

Suppose that the Paxter source code (as shown above)
is stored within the file called "new-blog.paxter".
Once Paxter package is installed,
we can run the command paxter html to render the HTML output.

$ cat new-blog.paxter
@h1{New Blog!}

Welcome to our new blog website.
@italic{Please keep watching this space for content.}

$ paxter html -i new-blog.paxter
<h1>New Blog!</h1><p>Welcome to our new blog website.
<i>Please keep watching this space for content.</i></p>

Method 2: Programmatic Usage

A more flexible way to transform Paxter source text into HTML output
is to make calls the API functions provided by Paxter library.
The easiest way is to do the following.

from paxter.quickauthor import run_document_paxter

The following source text is read from a source file.
However, in reality, source text may be read from other sources
such as some databases or even fetched via some content management API.
with open("new-blog.paxter") as fobj:
 source_text = fobj.read()

document = run_document_paxter(source_text)
html_output = document.html()

>>> print(html_output)
<h1>New Blog!</h1><p>Welcome to our new blog website.
<i>Please keep watching this space for content.</i></p>

This approach shown here is merely the very basic usage
of Paxter library with preconfigured settings.
More advanced programmatic usage will be discussed later.

Quick Blogging

To quickly get started with blogging or writing an article,
we introduce the Paxter language syntax
as being preconfigured by paxter.author subpackage
which can be used to write rich-formatted content.

Beware

Most of the descriptions about the syntax shown on this page
are specific to the preconfigured variation of Paxter language
provided by paxter.author subpackage.
It is actually not tied to the core Paxter language specification.

Paxter library (which includes the core Paxter language specification)
is designed to be very extensible and customizable.
The paxter.author subpackage is merely
supplementary provided by Paxter library for convenience.
It is entirely possible to utilize Paxter library without touching
any of the paxter.author whatsoever,
as being demonstrated in the Under Construction.

Command: A Basic Building Block

A command is the core building block in Paxter language.
It has various syntactical forms, but all of them have the same basic principles:

	Each command always begin with an @ symbol in the source text.

	Each command always has the phrase part
which immediately follows the initial @ symbol.

	Each command may optionally have what is called the options part.
If it exists, it has the form of [...] that follows the phrase part.

	Each command may optionally have what is called the main argument part.
If it exists, it follows the phrase part
or the options part (if the options part exists).

This may sound confusing right now.
Hopefully things will get clearer as we discuss
the specific syntax on the page Evaluation Cycle Explained.

Rule of Thumb

A rule of thumb to remember about the core Paxter language
is that it dictates only how a command in the source text should be parsed.
It has no bearing on how each parsed command and any other raw text
are to be interpreted or evaluated into the desired final output.
For descriptions of syntax appeared on this page,
this interpretation is done by the supplementary paxter.author subpackage.

Bolds, Italics, and Underline

Let’s begin with “bolding” part of a source text.
We use the command @bold{...},
replacing ... with the actual text to be emphasized.
In this particular command, bold is the phrase part
whereas the emphasized text is the main argument part of the command.

For example, consider the following source text written in Paxter language.

This is a very @bold{important part} of the statement.

This source text will be transformed to the following HTML output.

<p>This is a very important part of the statement.</p>

And likewise, for italicized text and underlined text,
use the command @italic{...} and @uline{...} respectively.
Notice that we altered the phrase part of the command
while the the main argument parts remains the same.

This is a very @italic{important part} of @uline{the statement}.

This source text will be transformed to the following HTML output.

<p>This is a very <i>important part</i> of <u>the statement</u>.</p>

Aside: Nested commands

One nice thing about Paxter command is that they are allowed
to be nested inside the main argument between the pair of curly braces.
For example,

This is @italic{so important that @uline{multiple emphasis} is required}.

When the above source text get rendered into HTML,
we obtain the following result.

<p>This is <i>so important that <u>multiple emphasis</u> is required</i>.</p>

Monospaced Code

Similarly to what we have seen with
@bold{...}, @italic{...}, and @uline{...} from above,
we use the command @code{...} to encapsulate text
to be displayed as monospaced code.

For example, the following source text written in Paxter language

Run the @code{python} command.

will be evaluated into the HTML output shown below.

<p>Run the <code>python</code> command.</p>

Multiple Paragraphs

To write multiple paragraphs,
simply separate chunks of texts with at least two newline characters
(i.e. there must be a blank line between consecutive paragraphs).
Each chunk of text will result in its own paragraph.
Consider the following example containing exactly three paragraphs.

This is @bold{the first paragraph}.
This is the second sentence of the first paragraph.

This is @italic{another} paragraph.

This is the @uline{final} paragraph.

The above text in Paxter language will be transformed
into the following HTML.

<p>This is the first paragraph.
 This is the second sentence of the first paragraph.</p>
<p>This is <i>another</i> paragraph.</p>
<p>This is the <u>final</u> paragraph.</p>

Reminder

The implicit paragraph splitting behavior of the source text
is preconfigured by the supplementary paxter.author subpackage
and has nothing to do with the core Paxter language specification.

Headings

To include a heading (from level 1 down to level 6)
use the command @h1{...} through @h6{...} on its own chunk.
They must be separated from other paragraph chunks
with at least one blank line.

@h1{New Blog!}

@bold{Welcome to the new blog!} Let’s celebrate!

@h2{Updates}

There is no update.

<h1>New Blog!</h1>
<p>Welcome to the new blog! Let’s celebrate!</p>
<h2>Updates</h2>
<p>There is no update.</p>

Observe that if the @h1{...} and @h2{...}
were removed from encapsulating the heading text,
they would have been rendered as its own paragraph.
Try that to see for yourself.

Also, what happens if the command @h1{...}
accidentally did not surround the entire chunk of text?
Let’s look at this example in which
the exclamation mark is located outside of the command:

@h1{New Blog}!

@bold{Welcome to the new blog!} Let’s celebrate!

<p><h1>New Blog</h1>!</p>
<p>Welcome to the new blog! Let’s celebrate!</p>

Since not the entire chunk of heading text
is encapsulated by the @h1{...} command,
Paxter assumes that it is simply just a paragraph.
So beware of this kind of errors.

Blockquote

The @blockquote{...} command must reside on its own chunk
just like a heading command.
So the following Paxter source text

They said that

@blockquote{I refuse.}

would be transformed into the following HTML output.

<p>They said that</p>
<blockquote>I refuse.</blockquote>

However, suppose that we want to include multiple paragraphs inside the blockquote.
We can follow the similar rules
as to how to write multiple paragraphs in general:
by separating them with at least one blank lines.
This is demonstrated in the following example.

They said that

@blockquote{
 I refuse.

 Then I regret.
}

<p>They said that</p>
<blockquote>
 <p>I refuse.</p>
 <p>Then I regret.</p>
</blockquote>

The important key to note here is that,
each paragraph within the blockquote will be surrounded by
a paragraph tag <p>...</p>
as long as more than one chunk of text exists.

Reminder

This particular behavioral rule is enforced by
paxter.author mainly for convenience.
Again, it has nothing to do with the core Paxter language specification.

Aside: Manual Paragraph Annotation

However, if we wish to force wrap the only paragraph within the blockquote
with a paragraph tag,
we can manually wrap that part of text with the @paragraph{...} command.
Let’s reconsider the first example of this section again.
If we wish to have a paragraph tag surround the text “I refuse.”,
then we can write as follows.

They said that

@blockquote{@paragraph{I refuse.}}

And we would get the following HTML output.

<p>They said that</p>
<blockquote><p>I refuse.</p></blockquote>

By the way, do you remember when an entire chunk of text
was contained within a command such as @h1{...}?
As a result, that particular chunk of text
did not get treated with paragraph tag <p>...</p>.
While this behavior is desirable for heading commands,
it is not the case for other inline commands such as @bold{...},
@italics{...} or @uline{...}.
For these commands, explicit @paragraph{...} is needed.

@bold{Bold text without paragraph encapsulation.}

@paragraph{@bold{Bold text paragraph.}}

Bold text without paragraph encapsulation.
<p>Bold text paragraph.</p>

Links and Images

So far, all of the commands we have seen on this page contains
the phrase section followed by the main argument part.
Now it is time to introduce other variations of a command syntax,
especially those which contain the options part.

To put a link such as a URL on a piece of text,
we use the command @link["target"]{text}
replacing the "target" with the string literal
containing the actual target URL.
The displaying text would still be those in between the curly braces.

Here is an example of the usage of the @link command.

Click @link["http://example.com"]{here} to go to my website.

<p>Click here to go to my website.</p>

Next, to insert an image, we use the command @image["srcpath", "alt"].
Notice that this command does not have the main argument part.
The options part of this commands accepts two arguments:
the first one being the string literal containing the URL path to the image
and the second one is for the image alternative text.
In fact, the second argument is actually not required
and will default to an empty string.
For example,

@image["http://example.com/hello.png", "hello"]

@image["http://example.com/bye.png"]

The above Paxter text will be rendered into the following HTML.

Notice

If you are thinking that the options part of a command syntax
looks eerily similar to function call syntax in python,
do take note that this happens by design.
We will dive into more details about the structure of command syntax
on the page Evaluation Cycle Explained.

Lists

There are two kinds of list enumerations: numbered list and bulleted list
(sometimes known as ordered and unordered lists respectively).
To create a numbered list, use the @numbered_list[...] command
where each argument of the options part represents an item of the list.
The textual content for each item must be enclosed by a pair of curly braces
like in the following example.

@numbered_list[
 {This is the first item.},
 {This is the @italic{second} item.},
 {This is the last item.},
]

 This is the first item.
 This is the <i>second</i> item.
 This is the last item.

Similarly, for bulleted list, use @bulleted_list[...] command
with the similar structure.

What happens there are more than one chunk of text
separated by a single blank line within one of the items of the list?
The paragraph splitting rules for @blockquote{...} also applies here,
as demonstrated in the following example.

@bulleted_list[
 {
 @bold{Rule number one.} Be clear.

 Very clear indeed.
 },
 {@bold{Rule number two.} Be consistent.},
]

 <p>Rule number one. Be clear.</p>
 <p>Very clear indeed.</p>

 Rule number two. Be consistent.

And yes, if there is only one paragraph and the explicit tag is needed,
wrap the content with the @paragraph{...} command.

Tables

Essentially, a table is a sequence of rows, and each row is a sequence of cells.
To construct a table, we use the command @table[...]
where each argument within the options part must be a command of the form
@table_header[...] for table header rows
or @table_row[...] for table data rows.
In turn, each cell within a table row would be wrapped in curly braces
and presented as an argument inside the options part of
@table_header[...] or @table_row[...]

To demystify this tedious explanation, consider the following example.

@table[
 @table_header[{No.}, {Name}, {Age}],
 @table_row[
 {1},
 {FirstnameA LastnameA},
 {21},
],
 @table_row[
 {2},
 {FirstnameB LastnameB},
 {34},
],
 @table_row[
 {3},
 {FirstnameC LastnameC},
 {55},
],
]

<table>
 <tr>
 <th>No.</th>
 <th>Name</th>
 <th>Age</th>
 </tr>
 <tr>
 <td>1</td>
 <td>FirstnameA LastnameA</td>
 <td>21</td>
 </tr>
 <tr>
 <td>2</td>
 <td>FirstnameB LastnameB</td>
 <td>34</td>
 </tr>
 <tr>
 <td>3</td>
 <td>FirstnameC LastnameC</td>
 <td>55</td>
 </tr>
</table>

Paragraph splitting rules also applies to each cell data
just like within a blockquote or within an item of a list.

Raw HTML

In HTML, symbols such as &, <, >, and " requires escaping
in order to be properly displayed in the rendered output
(in the form of &, <, >, and " respectively).
For HTML rendering performed by the paxter.author subpackage,
the escaping of these special characters are automatically done
for both convenience and safety reasons.

However, there might be times you wish to include HTML tags or
HTML entities [https://html.spec.whatwg.org/multipage/named-characters.html#named-character-references]
such as ... or –.
This can be done using the command of the form @raw"text".
For example,

Let’s count A–Z.

No, I mean A@raw"–"Z!

Use ... for @raw""strikethrough@raw"" text.

<p>Let’s count A&ndash;Z.</p>
<p>No, I mean A–Z!</p>
<p>Use ... for strikethrough text.</p>

And this is how the above HTML code is displayed:

 Let’s count A–Z.

 No, I mean A

 Evaluation Cycle Explained

Evaluation Cycle Explained

On this page, we are going to see what happens under the hood
when a source text in Paxter language got parsed and interpreted.
Let’s consider evaluating the following source text as our motivating example:

Please visit @link["https://example.com"]{@italic{this} website}. @line_break
@image["https://example.com/hello.jpg", "hello"]

We are going to assume that we use the function
run_document_paxter()
in order to evaluate the above source text into the final HTML output.
This transformation can be divided into three logical steps.

	Parsing source text

	Evaluating parsed tree into document object

	Rendering document object

Step 1: Parsing Source Text

Specifically, the core paxter.parse subpackage
implements a parser, ParseContext,
which parses a source text (written in Paxter language) into the parsed tree form.
Here is how to use python API to run this step.

from paxter.syntax import _ParsingTask

source_text = '''Please visit @link["https://example.com"]{@italic{this} website}. @line_break
@image["https://example.com/hello.jpg", "hello"]'''
parsed_tree = _ParsingTask(source_text).tree

We can also see the content of the parsed_tree if we print them out.
However, feel free to skip over this big chunk of output
as they are not relevant to what we are discussing right now.

>>> print(parsed_tree)
FragmentSeq(
 start_pos=0,
 end_pos=126,
 children=[
 Text(start_pos=0, end_pos=13, inner="Please visit ", enclosing=EnclosingPattern(left="", right="")),
 Command(
 start_pos=14,
 end_pos=64,
 phrase="link",
 phrase_enclosing=EnclosingPattern(left="", right=""),
 options=TokenSeq(
 start_pos=19,
 end_pos=40,
 children=[
 Text(
 start_pos=20,
 end_pos=39,
 inner="https://example.com",
 enclosing=EnclosingPattern(left='"', right='"'),
)
],
),
 main_arg=FragmentSeq(
 start_pos=42,
 end_pos=63,
 children=[
 Command(
 start_pos=43,
 end_pos=55,
 phrase="italic",
 phrase_enclosing=EnclosingPattern(left="", right=""),
 options=None,
 main_arg=FragmentSeq(
 start_pos=50,
 end_pos=54,
 children=[
 Text(
 start_pos=50,
 end_pos=54,
 inner="this",
 enclosing=EnclosingPattern(left="", right=""),
)
],
 enclosing=EnclosingPattern(left="{", right="}"),
),
),
 Text(start_pos=55, end_pos=63, inner=" website", enclosing=EnclosingPattern(left="", right="")),
],
 enclosing=EnclosingPattern(left="{", right="}"),
),
),
 Text(start_pos=64, end_pos=66, inner=". ", enclosing=EnclosingPattern(left="", right="")),
 Command(
 start_pos=67,
 end_pos=77,
 phrase="line_break",
 phrase_enclosing=EnclosingPattern(left="", right=""),
 options=None,
 main_arg=None,
),
 Text(start_pos=77, end_pos=78, inner="\n", enclosing=EnclosingPattern(left="", right="")),
 Command(
 start_pos=79,
 end_pos=126,
 phrase="image",
 phrase_enclosing=EnclosingPattern(left="", right=""),
 options=TokenSeq(
 start_pos=85,
 end_pos=125,
 children=[
 Text(
 start_pos=86,
 end_pos=115,
 inner="https://example.com/hello.jpg",
 enclosing=EnclosingPattern(left='"', right='"'),
),
 Operator(start_pos=116, end_pos=117, symbols=","),
 Text(start_pos=119, end_pos=124, inner="hello", enclosing=EnclosingPattern(left='"', right='"')),
],
),
 main_arg=None,
),
],
 enclosing=GlobalEnclosingPattern(),
)

Dear Advanced Users

For those who are familiar with the field of Programming Languages,
this maybe enough to get you run wild!
See the syntax reference
and the data definitions for parsed tree nodes
to help get started right away.

Step 2: Evaluating Parsed Tree Into Document Object

The parsed_tree from the previous step is then interpreted
by a tree transformer from the paxter.interpret subpackage.
In general, what a parsed tree would be evaluated into
depends on each individual (meaning you, dear reader).

Paxter library decides to implement one possible version of a tree transformer
called InterpreterContext.
This particular transformer tries to
mimic the behavior of calling python functions as closest possible.
In addition, this transformer expects what is called
the initial environment dictionary under which python executions are performed.
For this particular scenario, this dictionary is created by the function
create_document_env()
from the paxter.author subpackage.
This environment dictionary contains the mapping of
function aliases to the actual python functions and object
and it is where the magic happens.

Let’s look at the contents of the environment dictionary
created by the above function
create_document_env().

from paxter.quickauthor.environ import create_document_env

env = create_document_env()

>>> env
{'_phrase_eval_': <function paxter.authoring.standards.phrase_unsafe_eval>,
 '_extras_': {},
 '@': '@',
 'for': <function paxter.authoring.controls.for_statement>,
 'if': <function paxter.authoring.controls.if_statement>,
 'python': <function paxter.authoring.standards.python_unsafe_exec>,
 'verb': <function paxter.authoring.standards.verbatim>,
 'raw': <class paxter.authoring.elements.RawElement>,
 'paragraph': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'h1': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'h2': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'h3': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'h4': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'h5': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'h6': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'bold': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'italic': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'uline': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'code': <classmethod paxter.authoring.elements.SimpleElement.from_fragments>,
 'blockquote': <classmethod paxter.authoring.elements.Blockquote.from_fragments>,
 'link': <classmethod paxter.authoring.elements.Link.from_fragments>,
 'image': <class paxter.authoring.elements.Image>,
 'numbered_list': <classmethod paxter.authoring.elements.EnumeratingElement.from_direct_args>,
 'bulleted_list': <classmethod paxter.authoring.elements.EnumeratingElement.from_direct_args>,
 'table': <classmethod paxter.authoring.elements.SimpleElement.from_direct_args>,
 'table_header': <classmethod paxter.authoring.elements.EnumeratingElement.from_direct_args>,
 'table_row': <classmethod paxter.authoring.elements.EnumeratingElement.from_direct_args>,
 'hrule': RawElement(body='<hr />'),
 'line_break': RawElement(body='
'),
 '\\': RawElement(body='
'),
 'nbsp': RawElement(body=' '),
 '%': RawElement(body=' '),
 'hairsp': RawElement(body=' '),
 '.': RawElement(body=' '),
 'thinsp': RawElement(body=' '),
 ',': RawElement(body=' ')}

It is crucial to point out that,
all of the commands we have seen so far
on the page Quick Blogging
(e.g. bold, h1, blockquote, numbered_list, table, and many others)
are some keys of the env dictionary object as listed above.
This is not a coincidence.
Essentially, Paxter library utilizes the data from this dictionary
in order to properly interpret each command in the source text.

Interpreting a Command

The process of interpreting a command is divided into two steps:
resolving the phrase and invoking a function call.
Let’s explore each step assuming the initial environment dictionary env
(borrowed from above).

	Resolve the phrase part.
By default, the phrase part is used as the key for looking up
a python value from the environment dictionary env.
For example, resolving the phrase italic from the command @italic{...}
would yield the value of env["italic"]
which refers to
Italic.from_fragments()
class method.
Likewise, the phrase link from the command @link["target"]{text} maps to
Link.from_fragments()
under the dictionary env.

Fallback Plan

However, if the key which is made of the phrase part
does not appear in env dictionary,
then the fallback plan is to use python built-in function eval() [https://docs.python.org/3/library/functions.html#eval]
to evaluate the entire phrase string with env as the global namespace.
This fallback behavior enables a myriad of features in Paxter ecosystem
including evaluating an anonymous python expression
from right within the source text.
In order to encode any string as the phrase of a command,
we need to introduce a slightly different syntactical form of a command,
which we would cover in a later tutorial,
but here is a little taste of that:

The result of 7 * 11 * 13 is @|7 * 11 * 13|.

<p>The result of 7 * 11 * 13 is 1001.</p>

Noteworthy

The phrase part resolution behavior (as described above)
is completely dictated by the default function located at env["_phrase_eval_"].
This behavior can be fully customized by switching out the default function
and replacing it with another implementation with identical function signature.
See Disable Python Environment (Demo)
to learn how to customize this behavior
and see how it affects the entire cycle of command evaluation.

	Invoke a function call.
Before we continue, if the original command contains
neither the options nor the main argument parts,
then the python object returned from step 1
will not be further process
and will immediately become the final output
of the command interpretation.

Otherwise, the available options part and the main argument part
will all become input arguments of a function call
to the object returned by the previous step.
Of course, that python object is expected to be callable in order to work.
Particularly,

	If the main argument part exists,
its value will always be the very first input argument of the function call.
If the options part also exists,
then each of its items (separated by commas)
will be subsequent arguments of the function call.

	If the main argument part does not exist,
then all of the items from the options part
will be sole input arguments of the function call.

Let’s walkthrough these two-step process with a few examples.

Example 1: Non-Callable Command

Let’s begin with a basic example.
The command @line_break on its own would get translated roughly
into the following python code equivalent.
The final result is stored inside the variable result.

Step 1: resolving the phrase
line_break_obj = env['line_break'] # paxter.quickauthor.elements.line_break
Step 2 is skipped since there is no function call
result = line_break_obj

Example 2: Command With Main Argument

Consider the command @italic{this}.
It would be transformed into the following python equivalent:

Step 1: resolving the phrase
italic_obj = env['italic'] # paxter.quickauthor.elements.Italic.from_fragments
Step 2: function call
result = italic_obj(FragmentList(["this"]))

Notice that the main argument part {this} of the command @italic{this}
gets translated to FragmentList(["this"]) in python representation.
In Paxter’s terminology, any component of the command syntax
which is enclosed by a pair of matching curly braces
would be known as a fragment list,
and it would be represented as a list of subtype
FragmentList.

Example 3: Command With Both Options and Main Argument

Let’s look at this rather complicated command
and its python code equivalent.

@link["https://example.com"]{@italic{this} website}

Step 1: resolving the phrases
italic_obj = env['italic'] # paxter.quickauthor.elements.Italic.from_fragments
link_obj = env['link'] # paxter.quickauthor.elements.Link.from_fragments

Step 2: function call
result = link_obj(
 FragmentList([
 italic_obj(FragmentList(["this"])), # just like previous example
 " website",
]),
 "https://example.com",
)

There are a few notes to point out:

	The first input argument of the function call to link_obj
derives from the main argument fragment list,
which contains the nested function call to italic_obj.

	The target URL "https://example.com" appeared in the options part of the @link command
becomes the second argument in the function call to link_obj.

To provide further clarification of how a command in Paxter source text gets translated,
consider the following example where a command
contains two argument items within its options part.

@foo["bar", 3]{text}

Step 1: resolving the phrases
foo_obj = env['foo']
Step 2: function call
result = foo_obj(FragmentList(["text"]), "bar", 3)

Python-style keyword arguments are also supported within the options part,
and it works in the way we expect.

@foo["bar", n=3]{text}

Step 1: resolving the phrase
foo_obj = env['foo']
Step 2: function call
result = foo_obj(FragmentList(["text"]), "bar", n=3)

Example 4: Commands With Options Only

In the master example at the beginning of this page,
we can see the following @image command:

@image["https://example.com/hello.jpg", "hello"]

Because the main argument part is not present inside the @image command,
the above source text would be interpreted similarly to the following python code.

Step 1: resolving the phrase
image_obj = env['image'] # paxter.quickauthor.elements.Image
Step 2: function call
result = image_obj("https://example.com/hello.jpg", "hello")

Is there a way to make a function call to the object with zero arguments?
Of course. It can be done by writing square brackets containing nothing inside it.

@foo[]

Step 1: resolving the phrase
foo_obj = env['foo']
Step 2: function call
result = foo_obj()

Beware not to use curly braces in place of square brackets
as it would have resulted in slightly different interpretation,
like in the following.

@foo{}

Step 1: resolving the phrase
foo_obj = env['foo']
Step 2: function call
result = foo_obj(FragmentList([]))

Motivating Example Revisited

By combining all of the above examples,
we can describe the semantics of the motivating example
as shown in the following python code
(the original source text is reproduced below for convenience):

Please visit @link["https://example.com"]{@italic{this} website}. @line_break
@image["https://example.com/hello.jpg", "hello"]

Step 1: resolving the phrases
italic_obj = env['italic'] # paxter.quickauthor.elements.Italic.from_fragments
link_obj = env['link'] # paxter.quickauthor.elements.Link.from_fragments
line_break_obj = env['line_break'] # paxter.quickauthor.elements.line_break
image_obj = env['image'] # paxter.quickauthor.elements.Image

Step 2: function call
document_result = FragmentList([
 "Please visit ",
 link_obj(
 FragmentList([
 italic_obj(FragmentList(["this"])),
 " website",
]),
 "https://example.com",
),
 ". ",
 line_break_obj,
 "\n",
 image_obj("https://example.com/hello.jpg", "hello"),
])

However, the actual python API to replicate the above result is as follows
(where parsed_tree is the result borrowed from step 1).

from paxter.quickauthor.environ import create_document_env
from paxter.interp.task import InterpretingTask

env = create_document_env()
document_result = InterpretingTask(source_text, env, parsed_tree).rendered

The result of interpreting the entire source text
using InterpreterContext
is always going to be a fragment list of each smaller pieces of content
(which is why the document_result in the above code is an instance of
FragmentList class).
Displaying the content of document_result gives us the following evaluated result.

>>> document_result
FragmentList([
 "Please visit ",
 Link(body=[Italic(body=["this"]), " website"], href="https://example.com"),
 ". ",
 RawElement(body="
"),
 "\n",
 Image(src="https://example.com/hello.jpg", alt="hello"),
])

Step 3: Rendering Document Object

Reminder Again

In all truthfulness, rendering the final_result into HTML string output
has nothing to do with the core Paxter language specification.
In fact, if library users implement their own version of parsed tree evaluator,
this particular step would be non-existent.

Rendering the entire document_result into HTML string output is simple.
Two small steps are required:

	Wrap the document_result with Document

	Invoke the Document.html() method.

And here is the python code to do exactly as just said:

from paxter.quickauthor.elements import Document

document = Document.from_fragments(document_result)
html_output = document.html()

This yields the following final HTML output:

>>> print(html_output)
<p>Please visit <i>this</i> website.

</p>

Preset Function

The preset function run_document_paxter()
introduced in the section Programmatic Usage
(from Getting Started page) simply performs all three steps as mentioned above in order.

 Interpreting Python Code

Interpreting Python Code

Let’s assume that we are still using the environment dictionary created by
create_document_env()
together with the default interpreter, which is implemented by
InterpreterContext.
Under this particular setup,
there are various ways to embed and run python code within the source text itself.
We discuss each possibility below.

Executing Python Statements

It would seem at first that there is no way to introduce a new binding
from a phrase to a python object into the environment dictionary
on an ad-hoc basis (i.e. from within the source text).
Actually, we can do so through the @python"..." command,
by putting actual python statements in-between the pair of quotation marks.

Assigning Variables

Here is one example where a long string is pre-defined once,
and reused multiple times.

@python"yaa = 'Yet Another Acronym'"
YAA is @yaa and it stands for @yaa.

<p>YAA is Yet Another Acronym and it stands for Yet Another Acronym.</p>

The command phrase @python maps to the callable object
python_unsafe_exec().
What this particular function does is executing the entire python source
through the built-in exec() [https://docs.python.org/3/library/functions.html#exec] function,
using the environment dictionary env as the global namespace.
When the assignment statement yaa = 'Yet Another Acronym' gets executed,
then the entry env['yaa'] gets populated with the string "Yet Another Acronym",
which is why the command @yaa can subsequently be referred to
within the source text.

Yet, a burning question arises:
what happens if the python source code itself has to contain quotation mark characters
when we also use it to delimit the main argument part of the @python command itself?
Let’s try that out!

@python"yaa = "Yet Another Acronym""
YAA is @yaa and it stands for @yaa.

Attempting to evaluate the above source text yields the following error (omitting traceback for clarity):

Traceback (most recent call last):
 ...
 File "<string>", line 1
 yaa =
 ^
SyntaxError: invalid syntax

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 ...
paxter.exceptions.PaxterRenderError: paxter apply evaluation error at line 1 col 2

The reason behind this error is that the main argument part of the command
was prematurely terminated at the first (closing) quotation mark character it finds.
Therefore, the incomplete python statement yaa = was parsed,
which yields the above error when executed.

The solution around this problem is to additionally enclose the quoted main argument
with an equal number of hash characters to both ends of the quoted argument.
For example, in the source text below,
the python source code begins at #" and ends at "#
(though we can also use the ##", "## pair as well).

@python#"yaa = "Yet Another Acronym""#
YAA is @yaa and it stands for @yaa.

More Information

The hash-enclosing rule is enforced by the core Paxter language specification,
and it applies at other locations as well.
Learn more on Paxter’s ways to escape special characters on the page Escaping Mechanisms.

Define New Functions

Continuing on the same line of thinking from above,
we could also define python functions using @python command
and make calls to them using command syntax from within the source text.

For example, we will create a new function that will repeat the main argument a few times.

@python##"
def repeat(main_arg, n=2):
 return n * main_arg
"##

@repeat{woof}

@repeat[3]{@bold{hi}}

@repeat[n=4]{@repeat{?}!}

<p>woofwoof</p>
<p>hihihi</p>
<p>??!??!??!??!</p>

Using Imported Values and Functions

We can also use command syntax to refer to values and functions
obtained through the import statement.

@python##"
from string import ascii_uppercase
from textwrap import shorten
"##

Letters in English alphabet are @ascii_uppercase.

@shorten[15]#"Good morning world!"#

@shorten["Good evening everyone.", width=20]

<p>Letters in English alphabet are ABCDEFGHIJKLMNOPQRSTUVWXYZ.</p>
<p>Good [...]</p>
<p>Good evening [...]</p>

Did you spot something?

Readers with a pair of eagle eyes will be able to spot that
we are liberally using the hash-enclosing rule here at the first @shorten command as well,
albeit totally unnecessary.
This is to illustrate that this hash-enclosing rule
works for any command (not just @python).

Evaluating Python Expressions

Applying all of the knowledge we have learned so far with Paxter library,
one way to evaluate a python expression and print its result inside the source text
is to do the following two steps:

	Inside the @python command, evaluate the desired expression and assign its result to a variable.

	Refer to the value of such variable through the command syntax.

Here is an example to demonstrate the above process.

@python##"
def add_one(value):
 return value + 1

ninetynine_plus_one = add_one(99)
product = 7 * 11 * 13
"##

The result of 99 + 1 is @ninetynine_plus_one.

The result of 7 * 11 * 13 is @product.

<p>The result of 99 + 1 is 100.</p>
<p>The result of 7 * 11 * 13 is 1001.</p>

Fortunately, there is a much nicer way to evaluate an anonymous python expression
and insert its evaluation result right at that location:
by using the @|...| syntax,
replacing ... with the expression itself.

@python##"
def add_one(value):
 return value + 1
"##

The result of 99 + 1 is @|add_one(99)|.

The result of 7 * 11 * 13 is @|7 * 11 * 13|.

<p>The result of 99 + 1 is 100.</p>
<p>The result of 7 * 11 * 13 is 1001.</p>

Although this new syntax @|...| may seem new,
it is actually an alternative form of the same old syntax command with the same old semantics.
Here are some key points about this syntax and the command syntax in general.

	@|...| is still considered a command in Paxter language
(no different from other commands we have seen so far up until this point).
For this particular syntax,
everything between the pair of bars is the phrase part of the command.
In fact, the command syntax @foo is the short form of @|foo| (both are syntactically equivalent).
This realization also applies to commands with options part and/or main argument part.
For example, @foo[bar]{baz} can also be written in full form as @|foo|[bar]{baz}.
Conversely, one may say that the phrase part may be written without the bars
if the entire phrase string resembles a python identifier form.

	Do you remember the section Interpreting a Command from a previous page
where we discuss how a command is being interpreted?
The very first step is to resolve the phrase part.
Notice that as part of the the backup plan,
the entire phrase will be evaluated as a python expression.
This is why commands like @|add_one(99)| and @|7 * 11 * 13|
work the way it is.

Let’s look at another example in which a command has a function call form
but the callable object is not stored inside a simple python identifier.

@python##"
import string, textwrap
"##

Letters in English alphabet are @|string.ascii_uppercase|.

@|textwrap.shorten|[15]#"Good morning world!"#

@|textwrap.shorten|["Good evening everyone.", width=20]

<p>Letters in English alphabet are ABCDEFGHIJKLMNOPQRSTUVWXYZ.</p>
<p>Good [...]</p>
<p>Good evening [...]</p>

And below is another example of rather complicated usage of the command syntax
(some concepts appeared below have not yet been discussed).

@python##"
import statistics
d6_faces = [1, 2, 3, 4, 5, 6]
"##

The expected outcome of rolling a D6 is @|statistics.mean|[@d6_faces].
If we remove the first item from the list (which is @|d6_faces.pop|[0])
then we are left with @|' '.join|[@map[@str, @d6_faces]].

<p>The expected outcome of rolling a D6 is 3.5.
 If we remove the first item from the list (which is 1)
 then we are left with 2 3 4 5 6.</p>

Before we move on, there is one more issue to address:
if the phrase part of a command could just be any python expression,
then how do we write expressions that contain bar characters themselves
(e.g. doing the bitwise or operation and the set union operation)?
Note that this kind of problem is very similar the previous problem (discussed earlier on this page)
where it was tricky to include quotation mark characters within quoted main argument, remember?

Paxter decides to solve all of these problem in the same way,
again, through hash-enclosing rule.
For example,

The bitwise OR between 5 and 9 is @##|5 | 9|##.

The union of set {1, 2, 4, 8} and {2, 3, 5, 7} is @#|{1, 2, 4, 8} | {2, 3, 5, 7}|#.

<p>The bitwise OR between 5 and 9 is 13.</p>
<p>The union of set {1, 2, 4, 8} and {2, 3, 5, 7} is {1, 2, 3, 4, 5, 7, 8}.</p>

 Disable Python Environment (Demo)

Disable Python Environment (Demo)

In this demo, we are going to customize the initial environment dictionary
in order to prevent arbitrary python code execution whatsoever.
Perhaps we as a programmer would like our users to write some content
using Paxter language without any risk of arbitrary code execution.

By default, the initial environment dictionary created by
create_document_env()
allows python code execution through two distinct endpoints:

	the @python command

	the anonymous python expression evaluation of phrase part of a command
(which is dictated by the function
python_unsafe_eval()
located at env["_phrase_eval_"] of the environment env)

For the first endpoint, we simply remove the command from the environment,
whereas for the second endpoint, we replace the function
located at env["_phrase_eval_"] with another variant
that does not make a call to eval() [https://docs.python.org/3/library/functions.html#eval] built-in function.

from typing import Optional

from paxter.quickauthor.controls import for_statement, if_statement
from paxter.quickauthor.elements import (
 Blockquote, Bold, BulletedList, Code,
 Heading1, Heading2, Heading3, Heading4, Heading5, Heading6,
 Image, Italic, Link, NumberedList, Paragraph, RawElement,
 Table, TableHeader, TableRow, Underline,
 hair_space, horizontal_rule, line_break,
 non_breaking_space, thin_space,
)
from paxter.quickauthor.standards import verbatim

def phrase_safe_eval(phrase: str, env: dict) -> Any:
 """
 Safely evaluates the given phrase of a command.
 If performs the evaluation in the following order.

 1. Looks up the value from ``env['_extras_']`` dict using phrase as key
 2. Looks up the value from ``env`` dict using phrase as key.

 The implementation of this function is borrowed from inspecting
 :func:`paxter.authoring.standards.phrase_unsafe_eval`.
 """
 if not phrase:
 return None
 extras = env.get('_extras_', {})
 if phrase in extras:
 return extras[phrase]
 if phrase in env:
 return env[phrase]
 raise KeyError(f"there is no command with key: {phrase}")

def create_safe_document_env(data: Optional[dict] = None):
 """
 Creates an string environment data for Paxter source code evaluation
 in Python authoring mode, specializes in constructing documents.

 The implementation of this function is borrowed from inspecting
 :func:`paxter.authoring.environ.create_document_env`.
 """
 data = data or {}
 return {
 '_phrase_eval_': phrase_safe_eval,
 '_extras_': {},
 '@': '@',
 'for': for_statement,
 'if': if_statement,
 # 'python': python_unsafe_exec,
 'verb': verbatim,
 'raw': RawElement,
 'paragraph': Paragraph.from_fragments,
 'h1': Heading1.from_fragments,
 'h2': Heading2.from_fragments,
 'h3': Heading3.from_fragments,
 'h4': Heading4.from_fragments,
 'h5': Heading5.from_fragments,
 'h6': Heading6.from_fragments,
 'bold': Bold.from_fragments,
 'italic': Italic.from_fragments,
 'uline': Underline.from_fragments,
 'code': Code.from_fragments,
 'blockquote': Blockquote.from_fragments,
 'link': Link.from_fragments,
 'image': Image,
 'numbered_list': NumberedList.from_direct_args,
 'bulleted_list': BulletedList.from_direct_args,
 'table': Table.from_direct_args,
 'table_header': TableHeader.from_direct_args,
 'table_row': TableRow.from_direct_args,
 'hrule': horizontal_rule,
 'line_break': line_break,
 '\\': line_break,
 'nbsp': non_breaking_space,
 '%': non_breaking_space,
 'hairsp': hair_space,
 '.': hair_space,
 'thinsp': thin_space,
 ',': thin_space,
 **data,
 }

And now we may safely evaluate the content written in Paxter language
without having to worry that there may be arbitrary python code execution
by using the initial environment dictionary created by the function
create_safe_document_env() from above.

from paxter.quickauthor import run_document_paxter

The following source text is read from a source file.
However, in reality, source text may be read from other sources
such as some databases or even fetched via some content management API.
with open("new-blog.paxter") as fobj:
 source_text = fobj.read()

env = create_safe_document_env() # from above
document = run_document_paxter(source_text, env)
html_output = document.html()

 Escaping Mechanisms

Escaping Mechanisms

Upon tinkering with writing blog posts through paxter.author subpackage,
we would eventually find out some technical limitations
with the command syntax in Paxter language.
On this page, we discuss these limitations.

Escaping ‘@’

As readers have already noticed that ‘@’ symbol
has special meaning in Paxter language:
it acts as a switch which turns
the subsequence piece of source text into a command.
Therefore, if Paxter library users wish to include ‘@’ string literal
as-is in the final HTML output, an escape of some sort is required.

… except that the core Paxter language specification actually
does not provide a way to escape ‘@’ symbols per se.
However, there are a few ways around this.

Method 1: Define Constants For ‘@’

We will take advantage of being able to run python code within the source text.
Specifically, we will define a variable to store the @ symbol character.

@python##"
at = '@'
"##
This is the @bold{at} symbol: @at.

<p>This is the at symbol: @.</p>

But this method would not work when you wish to
write an email address or a twitter handle.
For this, additional bar-delimiters surrounding the phrase is needed
(see the next section of this page for more information).

@python##"
at = '@'
"##
Email me at @link["mailto:person@example.com"]{person@|at|example.com}
and my twitter handle is @|at|example. Don’t @at me.

<p>Email me at person@example.com
 and my twitter handle is @example. Don’t @ me.</p>

Method 2: Using @verb Command

The pre-defined @verb command (short for verbatim)
accepts a string argument and returns it as-is.
Here is an example of how to author the same document from the previous example.

Email me at @link["mailto:person@example.com"]{@verb##"person@example.com"##}
and my twitter handle is @verb"@"example. @verb"Don’t @ me".

<p>Email me at person@example.com
 and my twitter handle is @example. Don’t @ me.</p>

Method 3: Using Symbol-Only Command

Recall the Pre-defined Raw HTML section from a past page.
We have the commands @\, @%, @., and @,
as shortcuts for some raw HTML strings.
In fact, commands under the symbol-only form
may represent other kinds of objects as well.
Particularly in paxter.author subpackage,
we can display the string ‘@’ through the command @@.

Suppose we wish to include an email address in a blog post.
Here is an example of the source text:

Email me at @link["mailto:person@example.com"]{person@@example.com}
and my twitter handle is @@example. Don’t @@ me.

The above source text gets transformed into the following HTML output.

<p>Email me at person@example.com
 and my twitter handle is @example. Don’t @ me.</p>

What would happen if we forgot to double the @ symbol?
Consider the following example source text.

Email me at @link["mailto:person@example.com"]{person@@example.com}
and my twitter handle is @example. Don’t @@ me.

Parsing the above source text would yield the following error.
Essentially, the @example command at line 2 column 27 is an unknown command.
(The stack trace may be long and scary. It is totally to skim over it.)

Traceback (most recent call last):
 File ".../paxter/src/paxter/evaluate/context.py", line 149, in transform_command
 phrase_value = phrase_eval(token.phrase, self.env)
 File ".../paxter/src/paxter/author/standards.py", line 31, in phrase_unsafe_eval
 return eval(phrase, env)
 File "<string>", line 1, in <module>
NameError: name 'example' is not defined

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File ".../paxter/venv/bin/paxter", line 33, in <module>
 sys.exit(load_entry_point('paxter', 'console_scripts', 'paxter')())
 File ".../paxter/venv/lib/python3.8/site-packages/click/core.py", line 829, in __call__
 return self.main(*args, **kwargs)
 File ".../paxter/venv/lib/python3.8/site-packages/click/core.py", line 782, in main
 rv = self.invoke(ctx)
 File ".../paxter/venv/lib/python3.8/site-packages/click/core.py", line 1259, in invoke
 return _process_result(sub_ctx.command.invoke(sub_ctx))
 File ".../paxter/venv/lib/python3.8/site-packages/click/core.py", line 1066, in invoke
 return ctx.invoke(self.callback, **ctx.params)
 File ".../paxter/venv/lib/python3.8/site-packages/click/core.py", line 610, in invoke
 return callback(*args, **kwargs)
 File ".../paxter/src/paxter/__main__.py", line 99, in run_html
 document = run_document_paxter(src_text, env)
 File ".../paxter/src/paxter/author/preset.py", line 34, in run_document_paxter
 evaluate_context = EvaluateContext(src_text, env, parse_context.tree)
 File "<string>", line 6, in __init__
 File ".../paxter/src/paxter/evaluate/context.py", line 40, in __post_init__
 self.rendered = self.render()
 File ".../paxter/src/paxter/evaluate/context.py", line 43, in render
 return self.transform_fragment_list(self.tree)
 File ".../paxter/src/paxter/evaluate/context.py", line 120, in transform_fragment_list
 result = [
 File ".../paxter/src/paxter/evaluate/context.py", line 120, in <listcomp>
 result = [
 File ".../paxter/src/paxter/evaluate/context.py", line 117, in <genexpr>
 self.transform_fragment(fragment)
 File ".../paxter/src/paxter/evaluate/context.py", line 73, in transform_fragment
 return self.transform_command(fragment)
 File ".../paxter/src/paxter/evaluate/context.py", line 153, in transform_command
 raise PaxterRenderError(
paxter.exceptions.PaxterRenderError: paxter command phrase evaluation error at line 2 col 27: 'example'

Escaping Delimiters: Curly Braces, Quotes, and Bars

Under Construction

This section is under construction.

 Dive Into Command Syntax

Dive Into Command Syntax

Under Construction

This section is under construction.

 Codeblock Syntax Highlight (Demo)

Codeblock Syntax Highlight (Demo)

Under Construction

This section is under construction.

 Under Construction

Under Construction

Under Construction

	Stages of Paxter language processing

	Customizing evaluation environment dictionary

	Customizing parsed tree evaluator

	Full language syntax tutorial

 Core API Reference

Core API Reference

Paxter language package provides the following core functionality.

Parsing

The following class is where the main Paxter language parsing logic happens.

Data Definitions

Results of the Paxter language parsing yields parsed trees
which consist of instances of the following data classes.

Other Utility Classes

Other classes related to parsing,
presented here for reference only.

Interpretation

The following class implements the basic tree evaluation in Paxter language.
Users may want to extend this class to override the tree evaluation.

The evaluated list of fragments will be of the following type

Function decorators

Wrappers for functions in python environments
to be used as function decorators.

Exceptions

These are all the exception classes raised from this library package.

	
class paxter.exceptions.PaxterBaseException(message: str [https://docs.python.org/3/library/stdtypes.html#str], **positions: CharLoc)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base exception specific to Paxter language ecosystem.
Positional index parameters indicates a mapping from position name
to its indexing inside the input text.

	
positions: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], CharLoc]

	A mapping from position name to LineCol position data

	
message: str [https://docs.python.org/3/library/stdtypes.html#str]

	Error message

	
class paxter.exceptions.PaxterConfigError(message: str [https://docs.python.org/3/library/stdtypes.html#str], **positions: CharLoc)

	Bases: paxter.exceptions.PaxterBaseException

Exception for configuration error.

	
class paxter.exceptions.PaxterSyntaxError(message: str [https://docs.python.org/3/library/stdtypes.html#str], **positions: CharLoc)

	Bases: paxter.exceptions.PaxterBaseException

Exception for syntax error raised while syntax input text in Paxter language.

	
class paxter.exceptions.PaxterRenderError(message: str [https://docs.python.org/3/library/stdtypes.html#str], **positions: CharLoc)

	Bases: paxter.exceptions.PaxterBaseException

Exception for parsed tree transformation error.

 Authoring API Reference

Authoring API Reference

All of the following functions and classes
are not part of the core Paxter language.
They are provided only for convenience;
it is entirely possible to utilize Paxter package
without using any of the following functions.
Users are encouraged to read source code of these functions
to learn how to reassemble core APIs to suit their needs.

Preset Functions

The following function combines Paxter language parsing
together with parsed tree evaluation.

Environment Creations

The following function creates a pre-defined unsafe Python environment dictionary
to be used with the evaluation context class.

Evaluation Context Objects

The following instances are available in preset environments.

	Object

	Alias

	Simple Environment

	Document Environment

	"@"

	"@@"

	Yes

	Yes

	for_statement

	for

	Yes

	Yes

	if_statement

	if

	Yes

	Yes

	python_unsafe_exec

	python

	Yes

	Yes

	verbatim

	verbatim

	Yes

	Yes

	RawElement

	raw

	-

	Yes

	Paragraph

	paragraph

	-

	Yes

	Heading1

	h1

	-

	Yes

	Heading2

	h2

	-

	Yes

	Heading3

	h3

	-

	Yes

	Heading4

	h4

	-

	Yes

	Heading5

	h5

	-

	Yes

	Heading6

	h6

	-

	Yes

	Blockquote

	blockquote

	-

	Yes

	Bold

	bold

	-

	Yes

	Italic

	italic

	-

	Yes

	Underline

	uline

	-

	Yes

	Code

	code

	-

	Yes

	Link

	link

	-

	Yes

	Image

	image

	-

	Yes

	NumberedList

	numbered_list

	-

	Yes

	BulletedList

	bulleted_list

	-

	Yes

	Table

	table

	-

	Yes

	TableHeader

	table_header

	-

	Yes

	TableRow

	table_row

	-

	Yes

	horizontal_rule

	hrule

	-

	Yes

	line_break

	line_break or "@\"

	-

	Yes

	non_breaking_space

	nbsp or "@%"

	-

	Yes

	hair_space

	hairsp or "@."

	-

	Yes

	thin_space

	thinsp or "@,"

	-

	Yes

Control Functions

Standard Functions

Element Data Classes

 Syntax Reference

Syntax Reference

Below are syntax descriptions of Paxter language.

Document Rule

The starting rule of Paxter language grammar
which is a special case of FragmentSeq Rule.
The result of parsing this rule is always
a FragmentSeq node
whose children includes non-empty strings
(as Text nodes),
interleaving with the result produced by Command Rule.

[image:]

Command Rule

Rule for parsing the textual content after
encountering the @-switch symbol character.

[image:]

What are the red shapes?

Red shapes appeared in the above diagram indicates a branching path
of parsing depending on conditions specified with the shapes.

There are a few possible scenarios.

	The first token is an identifier.
The parsed identifier becomes the phrase part of the
Command.
Then the parser would attempt to parse the options section
and the main argument section if they exist.

	The first token is \(n\) hash characters followed by a bar character.
Then the parser will attempt to parse for the phrase part non-greedily
until a bar character followed by \(n\) hash characters are found.
If the parsing result of the phrase is not empty,
then the parser would continue on trying to parse for the options section
and the main argument section.

However, if the phrase is empty, then the options section
as well as the main argument section are assumed to be empty.

	The first token is a single symbol character.
This would result in such symbol becoming the sole content of the phrase section,
while other sections (i.e. options and main argument) are empty.

FragmentSeq Rule

This rule always begins with \(n\) hash characters followed by a left brace
and ends with a right brace followed by \(n\) hash characters,
for some non-negative integer \(n\).
Between this pair of curly braces is an interleaving of strings
(as Text)
and Command,
all of which are children of FragmentSeq instance.

One important point to note is that each string is parsed non-greedily;
each resulting string would never contain a right brace
followed by \(n\) or more hash characters.

[image:]

Text Rule

This rule is similar to FragmentSeq Rule except for two main reasons.
The first reason is that nested Command
will not be parsed (i.e. "@" is not a special character in this scope).
Another reason is that, instead of having a matching pair of curly braces
indicate the beginning and the ending of the rule,
quotation marks are used instead.

[image:]

TokenSeq Rule

Following this parsing rule results in a sequence of zero or more tokens,
possibly separated by whitespaces.
Each token may be a Command,
an Identifier,
an Operator,
a Number,
a FragmentSeq,
a Text,
or a nested TokenSeq.
This resulting sequence of tokens are children of
TokenSeq node type.

[image:]

Good To Know

The option section (or the token list) is the only place where whitespaces
are ignored when they appear between tokens.

Identifier Rule

This rule generally follows python rules for greedily parsing
an identifier token (with some extreme exceptions).
The result is an Identifier node type.

[image:]

Operator Rule

Greedily consumes as many operator characters as possible
(with two notable exceptions: a common and a semicolon,
each of which has to appear on its own).
Whitespace characters may be needed to separate two consecutive,
multi-character operator tokens.
The result is an Operator node type.

[image:]

 Getting Started

Getting Started

Todo

This page is due for removal.

Installation

Paxter language package can be installed from PyPI via pip command
(or any other methods of your choice):

$ pip install paxter

Programmatic Usage

This package is mainly intended to be utilized as a library.
To get started, let’s assume that we have a document source text
written using Paxter language syntax.

Of course, input text of a document may be read from any source,
such as from a text file loaded from the filesystem, from user input, etc.

source_text = """\
@python##"
 from datetime import datetime

 name = "Ashley"
 year_of_birth = 1987
 current_age = datetime.now().year - year_of_birth
"##\\
My name is @name and my current age is @current_age.
My shop opens Monday@,-@,Friday.
"""

Note

Learn more about Paxter language grammar and features.

Parsing

First and foremost, we use a parser
(implemented by the class ParseContext)
to transform the source input into an intermediate parsed tree.

from paxter.core import ParseContext

parsed_tree = ParseContext(source_text).tree

Note: We can see the structure of the parsed tree in full
by printing out its content as shown below (output reformatted for clarify).

>>> parsed_tree
FragmentList(
 start_pos=0,
 end_pos=236,
 children=[
 Command(
 start_pos=1,
 end_pos=148,
 starter="python",
 starter_enclosing=EnclosingPattern(left="", right=""),
 option=None,
 main_arg=Text(
 start_pos=10,
 end_pos=145,
 inner='\n from datetime import datetime\n\n name = "Ashley"\n year_of_birth = 1987\n current_age = datetime.now().year - year_of_birth\n',
 enclosing=EnclosingPattern(left='##"', right='"##'),
),
),
 Text(
 start_pos=148,
 end_pos=161,
 inner="\\\nMy name is ",
 enclosing=EnclosingPattern(left="", right=""),
),
 Command(
 start_pos=162,
 end_pos=166,
 starter="name",
 starter_enclosing=EnclosingPattern(left="", right=""),
 option=None,
 main_arg=None,
),
 Text(
 start_pos=166,
 end_pos=189,
 inner=" and my current age is ",
 enclosing=EnclosingPattern(left="", right=""),
),
 Command(
 start_pos=190,
 end_pos=201,
 starter="current_age",
 starter_enclosing=EnclosingPattern(left="", right=""),
 option=None,
 main_arg=None,
),
 Text(
 start_pos=201,
 end_pos=223,
 inner=".\nMy shop opens Monday",
 enclosing=EnclosingPattern(left="", right=""),
),
 SymbolCommand(start_pos=224, end_pos=225, symbol=","),
 Text(
 start_pos=225,
 end_pos=226,
 inner="-",
 enclosing=EnclosingPattern(left="", right=""),
),
 SymbolCommand(start_pos=227, end_pos=228, symbol=","),
 Text(
 start_pos=228,
 end_pos=236,
 inner="Friday.\n",
 enclosing=EnclosingPattern(left="", right=""),
),
],
 enclosing=GlobalEnclosingPattern(),
)

Notice how the source text above also contains what seems like a Python code.
This has nothing to do with Paxter core grammar in any way;
it simply uses the Paxter command syntax to embed Python code
to which we will give a meaningful interpretation later.

Rendering

Next step, we use a built-in renderer
to transform the intermediate parsed tree into its final output.
It is important to remember that
the semantics of the documents depends on which renderer we are choosing.

We will adopt the Python authoring mode whose renderer
(implemented by EvaluateContext)
is already pre-defined by the Paxter library package
to transform the parsed tree into the desired final form.
One of its very useful features is that it will execute python code
under the @python command.

from paxter.author import create_simple_env
from paxter.interpret import EvaluateContext

This dictionary data represents the initial global dict state
for the interpretation the document tree in python authoring mode.
env = create_simple_env({
 '_symbols_': {',': ' '},
})

result = EvaluateContext(source_text, env, parsed_tree).rendered
print(result) # or write to a file, etc.

The above code will output the following.

My name is Ashley and my current age is 33.
My shop opens Monday - Friday.

Note

Learn more about how to use Python authoring mode
and how to write custom renderer.

Create your own function

We recommend Paxter library users to by themselves write a utility function
to connect all of the toolchains provided Paxter package.
This is the minimal example of a function to get you started.

from paxter.core import ParseContext
from paxter.authoring import RenderContext, create_unsafe_env

def interp(source_text: str) -> str:
 parsed_tree = ParseContext(source_text).tree
 result = RenderContext(source_text, create_unsafe_env(), tree).rendered
 return result

Command-Line Usage

As a shortcut, Paxter library package also provided some utilities
via command-line program.
To get started, red the help message using the following command:

$ paxter --help

To play around with the parser, you may use parse subcommand with an input.
Suppose that we have the following input file.

$ cat intro.paxter
@python##"
 from datetime import datetime

 symbols = {
 ',': ' ',
 }
 name = "Ashley"
 year_of_birth = 1987
 current_age = datetime.now().year - year_of_birth
"##\
My name is @name and my current age is @current_age.
My shop opens Monday@,-@,Friday.

Then we can see the intermediate parsed tree using this command:

$ paxter parse -i intro.paxter

If we wish to also render the document written in Paxter language
under the Python authoring mode with the default environment,
then use the following command:

$ paxter pyauthor -i intro.paxter -o result.txt
$ cat result.txt
My name is Ashley and my current age is 33.
My shop opens Monday - Friday.

However, this command-line option does not provide a lot of flexibility.
So we recommend users to dig deeper with a more programmatic usage.
It may require a lot of time and effort to setup the entire toolchain,
but it will definitely pay off in the long run.

 Paxter Language Tutorial

Paxter Language Tutorial

Todo

This page requires revision.

Note

This is a tutotrial for bare Paxter language specification.
It discusses only the basic Paxter syntax without any associated semantics
as the semantics to the intermediate parsed tree is generally given
by users of Paxter library.

For a simpler usage of Paxter library package, please also see
Python authoring mode tutorial page.

Paxter syntax is very simple.
In most cases, a typical text is a valid Paxter document, like in the following:

Hello, World!
My name is Ashley, and I am 33 years old.

However, Paxter provides a special syntax called @-expressions
(pronounced “at expressions”)
so that richer information may be inserted into the document.
There are 2 kinds of @-expressions, all of which begins with an @-symbol:
a command and a short symbol expression.

This @-symbol (codepoint U+0040) is sometimes called a switch
because it indicates the beginning of an @-expression,
and whatever follows the switch determines which kind of @-expression it is.

Next, we dive into each kind of @-expressions.

Note

Consult Syntax Reference for
a more detailed Paxter language grammar specification.

1. Command

A command is the most powerful syntax in Paxter language.
It consists of the following 3 sections of information:

"@" starter [option] [main_argument]

Among these 3 sections, only the starter section is mandatory;
the other 2 sections are optional and can be omitted.
Additionally, there should not be any whitespace characters
separating between the switch and the starter section,
nor between different sections of the same command.

Starter section

A starter of a command may contain any textual content,
surrounded by a pair of bars | (U+007C).

Here are examples of a valid command with only the starter section.

@|foo|
@|_create|
@|สวัสดี|
@|foo.bar|
@|1 + 1|
@|Hello, World!|

However, if the content of the starter section
takes the form of a valid Python identifier,
then the pair of bars may be dropped.
So the first 3 examples from above may be rewritten as follows:

@foo
@_create
@สวัสดี

On the other hand, the textual content of the starter may sometimes
contain a bar as part of itself (such as x || y || z).
Then we may additionally surround the matching pair of bars
with an equal number of hashes # (U+0023):

@#|x || y || z|#
@###|x || y || z|###

But the following example will not work as expected:

@|x || y || z| is a command whose starter content contains exactly just “x ”
followed by regular text “| y || z|”.

Obviously, if the starter section begins with n hashes followed by a bar,
then the textual content itself cannot contain a bar followed by n or more hashes
(otherwise, the starter section would have terminated earlier).

@##|good|#|one|##
@##|bad|##|one|##

In this example (shown above), the starter of the first command is good|#|boy
whereas that of the other command cuts short at bad
(followed by the text |one|##).

Note: In a sense, this bar pattern (by which we mean
the pattern of surrounding some content with a pair of bars
plus an equal number of hashes on both ends) will be parsed non-greedily
(i.e. the parsing of the starter halts as soon as the closing pattern
corresponding to the opening pattern encountered earlier is found).

Main argument section

Let’s skip the option section for now
and discuss the main argument section of a command first.

As the name suggests, the main argument section of a command
contains the most important piece of information to which the command is applied.
The main argument can be supplied in one of 2 modes:
the fragment list mode (in which the content is wrapped within the brace pattern)
and the text mode (i.e. the content is wrapped within the quoted pattern).

(a) Wrapped fragment list mode

For a fragment list mode as the main argument,
the content may contain texts as well as any nested @-expressions.

The content itself must be surrounded by a pair of curly braces
(U+007B and U+007D) called the brace pattern
(in analogous to the bar pattern associated with the starter section of a command).
Of course, additionally appending the equal number of hashes to both ends are allowed.

For example,

@foo{Hello, @name}
@|font.large|{BUY ONE GET ONE FREE!}
@highlight##{A set of natural numbers: {0, 1, 2, 3, ...}.}##.

Similarly to the bar pattern from the starter section of a command,
if the wrapped fragment list begins with n hashes followed by a left curly brace,
then the immediate inner textual content may not contain
a right curly brace followed by n or more hashes.

In the following example, the outermost command has the starter foo
and its main argument is in fact @bar{1###}###.
That is because (1) the curly braces pair surrounding 1###
(marked with “^”) match with each other,
and thus (2) the succeeding 3 hashes are not associated
with the marked closing curly brace.

@foo###{@bar{1###}###}###
 ^ ^

(b) Wrapped text mode

Wrapped texts are somewhat similar to wrapped fragment lists,
except for 2 major aspects:

	Instead of using a matching pair of curly braces surrounding the inner content,
wrapped texts use a pair of quotation marks (U+0022).
This is called the quoted pattern in analogous to the brace pattern
for wrapped fragment lists.

	All @-symbol characters within the textual content
will not be interpreted as the switch for @-expressions.
Hence, wrapped texts would not contain any nested @-expressions.

This mode of main argument is useful especially when we expect the inner content
of the main argument to be from another domain where @-symbols are prevalent.

For example, when you want to embed source code from another language:

@python_highlight##"

 # Results of the following function is cached
 # depending on its input
 from functools import lru_cache

 @lru_cache(maxsize=None)
 def add(x, y):
 """Adding function with caching."""
 return x + y

"##

Again, if the inner content needs to contain a quotation mark,
we may add an equal number of hashes to both ends:

@alert#"Submit your feedback to "ashley@example.com"."#

Option section

The existence of a left square bracket immediately after the starter section
of a command always indicates the beginning of the option section.
The option section itself is a sequence of tokens where each token can be
one of the following:

	Another @-expression of any kind

	An identifier (according to Python grammar)

	An operator which can be a single comma, a single semicolon,
or a combination of all other symbol characters
(excluding hashes, quotation marks, curly braces, and square brackets)

	A number whose syntactical form adheres to JSON grammar for number literal

	A fragment list wrapped within the brace pattern
(which shares the same syntax as already discussed in the main argument section)

	A text wrapped within the quoted pattern
(which shares the same syntax as already discussed in the main argument section)

	A nested sequence of tokens itself,
surrounded by a matching pair of square brackets (U+005B and U+005D).

Warning

Please note that inside the option section of a command
is the only place in Paxter language where whitespace characters
between tokens are ignored.

Here are a couple of examples of commands which include the option section:

	For the command @foo[x="bar", y=2.5, z={me}]{text},
its option section contains a sequence of 11 tokens:

	an identifier x

	an equal sign operator =

	a text token bar

	a comma operator ,

	an identifier y

	an equal sign operator =

	the number literal 2.5

	a comma operator ,

	an identifier z

	an equal sign operator =, and

	a fragment list containing the text me

	For the command @|foo.bar|[x <- [2]; @baz],
its option section contains a sequence of 5 tokens:

	an identifier x

	a left arrow operator <-

	a nested sequence containing the number literal 2 as the only token within it

	a semicolon operator ;, and

	a nested command with baz as the starter section
and with all other sections omitted.

Paxter language syntax gives a lot of freedom for what is allowed within
the option section of a command;
a programmer-write who writes a renderer to transform Paxter intermediate parsed trees
into data of another form has a liberty to add whatever constraints
to the syntactical structure within the option section.

2. Single Symbol Expression

This kind of @-expression is in the form of a single symbol character
immediately following the @-symbol switch.
This single symbol character will be the sole content
of the single symbol expression.

For example,

There is free food today between 3@,-@,5 PM.

Warning

If @# happens to be the prefix of a full-form @-expressions
(such as in @#|foo|#),
then @# by itself is not a valid command in special form.
It must be unambiguously not part of full-form command
for itself to become a valid command of special form.

Escaping @-Symbol Switches

Paxter language does not provide any syntax to escape
@-symbol switches of @-expressions.
We recommend the library user solve this kind of problem
at the interpreter/renderer level instead.

One way to do this is to define the behavior of @@
(a single symbol expression with @ symbol following the switch)
to be transformed into a single @ symbol in the rendered output.

My email is ashley@@example.com.

Another method to work around this problem is to introduce
a command called verbatim (inspired by the command of the same name in LaTeX)
which will output the main input argument as-is.

My email is @verbatim"ashley@example.com".

 Python Authoring Mode Tutorial

Python Authoring Mode Tutorial

Todo

This page requires revision.

Block Python Code Execution

In Python authoring mode,
Python source code may be embedded into the document for execution
using python command syntax with the code as the main argument.
For example,

@python##"
 name = "Ashley"
"##

In the example document above, once the Python code in the preamble is executed,
the value of the variable name will be available in the environment
for the rest of the document.

Referring to variable from Python code

One way to referring to the value of the variable name
is to use the command syntax @name without any options or main arguments sections.
So the following document

@python##"
 name = "Ashley"
"##
Hi, @name.

will be rendered into

Hi, Ashley.

Remove unwanted newlines

Notice how the newline character was preserved in the above output.
If we wish to remove that newline character,
we may put a backslash at the end of that line.
So the following document

@python##"
 name = "Ashley"
"##\
Hi, @name.

yields the following output in Python authoring mode

Hi, Ashley.

Referring to functions from Python code

We may also define Python functions within the embedded Python source code
and refer to them later in the document.
The syntax to make a call to a function already defined
is a command syntax with the main argument supplied.
Here is one example,

@python##"
 def surround(text):
 return "(" + flatten(text) + ")"
"##\
This is @surround{sound}.

which will return

This is (sound).

The reason why we need to flatten the main argument first is that
the fragment list (i.e. the part surrounded by a matching pair of curly braces)
returns a list of string tokens (not the string itself),
hence it is important to flatten them into a single string first
(otherwise an error would have occurred).

Python functions with multiple arguments

When there is more than one argument to the function,
the main argument of the command will always be the first argument of the function,
and the rest of the function arguments can be supplied
to option section of the command (similarly to Python function call syntax):

@python##"
 def surround(text, n, left='(', right=')'):
 return flatten(left) * n + flatten(text) + flatten(right) * n
"##\
This is @surround[3]{sound}.
This is @surround[n=3]{sound}.
This is @surround[3, "[", "]"]{sound}.
This is @surround[3, right=""]{sound}.
This is @surround[n=3, left="_", right="_"]{sound}.

Here is the result.

This is (((sound))).
This is (((sound))).
This is [[[sound]]].
This is (((sound.
This is ___sound___.

Notice that we use wrapped text inside the option section
in order to supply strings as arguments to the function surround.

Additionally, we may also omit the main argument section,
and then the entire option section will all be the arguments to the function:

@python##"
 def surround(text, n, left='(', right=')'):
 return flatten(left) * n + flatten(text) + flatten(right) * n
"##\
This is @surround["sound",3].
This is @surround["sound",n=3].

The above document will be rendered into

This is (((sound))).
This is (((sound))).

Inline Python Code Evaluation

We may wish to insert the result of the evaluation of Python expression.
We can do so by using the command syntax with the bar pattern @|...|:

The result of 7 × 11 × 13 is @|7 * 11 * 13|.

and that would be transformed into

The result of 7 × 11 × 13 is 1001.

Inline Python code with function call

If a function behind an attribute or key lookup,
we may use the bar pattern in conjunction with main arguments and/or options.

@python##"
 import statistics
 values = [2, 3, 5, 7]
 funcs = {
 'median': statistics.median
 }
"##\
The average of first 4 primes is @|statistics.mean|[@values].
The median of first 4 primes is @|funcs['median']|[@values].

The above document returns the following.

The average of first 4 primes is 4.25.
The median of first 4 primes is 4.0.

Special Symbol Commands

For the sake of simplicity,
we provide an easy way to perform text replacements for symbol-style commands.
Simply define a dictionary mapping from each symbol to the substituting results
under the variable _symbol_ inside the Python source code.

@python##"
 symbols = {
 '.': ' ',
 ',': ' ',
 '@': '@',
 }
"##\
My email is ashley@@example.com.
My office hours is between 7@.-@.9 PM.

Here is the result of the above document.

My email is ashley@example.com.
My office hours is between 7 - 9 PM.

Special Commands: For and If

For statements within the document for Python authoring mode
has the following format

@for[<IDENTIFIER> in <EXPRESSION>]{<BODY>}

whereas if statements has the 3 following formats

@if[<CONDITIONAL>]{<BODY>}
@if[not <CONDITIONAL>]{<BODY>}
@if[<CONDITIONAL> then <THEN_BODY> else <ELSE_BODY>]

Here is the document that illustrates how to use these special commands:

@python##"
 def is_odd(value):
 return value % 2 == 1
"##\
Odd digits are @flatten{@for[i in @|range(10)|]{@if[@|is_odd(i)|]{ @i}}}.
Even digits are @flatten{@for[i in @|range(10)|]{@if[not @|is_odd(i)|]{ @i}}}.
Digits are @flatten{@for[i in @|range(10)|]{@if[@|is_odd(i)| then " odd" else " even"]}} in this order.

and the result would be

Odd digits are 1 3 5 7 9.
Even digits are 0 2 4 6 8.
Digits are even odd even odd even odd even odd even odd in this order.

 Index

Index

 M
 | P

M

 	
 	message (paxter.exceptions.PaxterBaseException attribute)

P

 	
 	PaxterBaseException (class in paxter.exceptions)

 	PaxterConfigError (class in paxter.exceptions)

 	
 	PaxterRenderError (class in paxter.exceptions)

 	PaxterSyntaxError (class in paxter.exceptions)

 	positions (paxter.exceptions.PaxterBaseException attribute)

_static/Identifier.png
Identifier

identifier start char

(Unicode classes Lu, LI, Lt, Lm, Lo, Nl and "_")

identifier cont. char

(Unicode classes Lu, LI, Lt, Lm, Lo, Mn, Mc, NI, Nd, Pc)

_static/Operator.png
Operator

operator char

(Unicode classes Pd, Po, Sc, Sk, Sm, So, excl. ",™ and "; ")

_static/Document.png
Top-Level Document (special case of FragmentSeq)

. non-empty string .

not containing "@" symbol

one element of children

one element of children

_static/FragmentSeq.png
FragmentSeq

#4 1y

n hashes followed by a left brace a right brace followed by n hashes

non-empty string
containing neither "@" symbol
nor [a right brace followed by n hashes]

one element of children
one element of children

_static/Text.png
#"" string "4"

n hashes followed by a quote not containing [a quote followed by n hashes] a quote followed by n hashes

inner := parsed string

_static/TokenSeq.png
TokenSeq

o

one element of children

_static/PaxterLogoOneRectangle.png
apaxter[1{

}

_static/PaxterLogoTwoRectangles.png
apaxter[1{
]
]
}

_images/Text.png
#"" string "4"

n hashes followed by a quote not containing [a quote followed by n hashes] a quote followed by n hashes

inner := parsed string

_images/TokenSeq.png
TokenSeq

o

one element of children

_images/Identifier.png
Identifier

identifier start char

(Unicode classes Lu, LI, Lt, Lm, Lo, Nl and "_")

identifier cont. char

(Unicode classes Lu, LI, Lt, Lm, Lo, Mn, Mc, NI, Nd, Pc)

_images/Operator.png
Operator

operator char

(Unicode classes Pd, Po, Sc, Sk, Sm, So, excl. ",™ and "; ")

_static/Command.png
Command

single symbol codepoint

(Unicode classes Ps, Pe, Pi, Pf,
Pd, Po, Sc, Sk, Sm, So)

next token begins with
either an identifier or [at least
zero hashes followed by a bar]?

phrase := parsed symbol

in previous step, Y
the parsed text

is empty?

#| | #1

n hashes followed by a bar a bar followed by n hashes

string

not containing [a bar followed by n hashes]

. - phrase := parsed string
where n is a non-negative integer

phrase := parsed Identifier

options := EMPTY

next token is
an open square
bracket?

main_arg := EMPTY

next token begins with at least
zero hashes followed by a left
brace or a quotation mark?

main_arg := parsed FragmentSeq

main_arg := parsed Text

_static/file.png

nav.xhtml

 Table of Contents

 		
 Paxter Documentation

 		
 Getting Started

 		
 Installation

 		
 Writing The First Blog Entry

 		
 Method 1: Command Line

 		
 Method 2: Programmatic Usage

 		
 Quick Blogging

 		
 Command: A Basic Building Block

 		
 Bolds, Italics, and Underline

 		
 Aside: Nested commands

 		
 Monospaced Code

 		
 Multiple Paragraphs

 		
 Headings

 		
 Blockquote

 		
 Aside: Manual Paragraph Annotation

 		
 Links and Images

 		
 Lists

 		
 Tables

 		
 Raw HTML

 		
 Pre-defined Raw HTML

 		
 Evaluation Cycle Explained

 		
 Step 1: Parsing Source Text

 		
 Step 2: Evaluating Parsed Tree Into Document Object

 		
 Interpreting a Command

 		
 Motivating Example Revisited

 		
 Step 3: Rendering Document Object

 		
 Interpreting Python Code

 		
 Executing Python Statements

 		
 Assigning Variables

 		
 Define New Functions

 		
 Using Imported Values and Functions

 		
 Evaluating Python Expressions

 		
 Disable Python Environment (Demo)

 		
 Escaping Mechanisms

 		
 Escaping ‘@’

 		
 Method 1: Define Constants For ‘@’

 		
 Method 2: Using @verb Command

 		
 Method 3: Using Symbol-Only Command

 		
 Escaping Delimiters: Curly Braces, Quotes, and Bars

 		
 Dive Into Command Syntax

 		
 Codeblock Syntax Highlight (Demo)

 		
 Under Construction

 		
 Core API Reference

 		
 Parsing

 		
 Data Definitions

 		
 Other Utility Classes

 		
 Interpretation

 		
 Function decorators

 		
 Exceptions

 		
 Authoring API Reference

 		
 Preset Functions

 		
 Environment Creations

 		
 Evaluation Context Objects

 		
 Control Functions

 		
 Standard Functions

 		
 Element Data Classes

 		
 Syntax Reference

 		
 Document Rule

 		
 Command Rule

 		
 FragmentSeq Rule

 		
 Text Rule

 		
 TokenSeq Rule

 		
 Identifier Rule

 		
 Operator Rule

 		
 Getting Started

 		
 Installation

 		
 Programmatic Usage

 		
 Parsing

 		
 Rendering

 		
 Create your own function

 		
 Command-Line Usage

 		
 Paxter Language Tutorial

 		
 1. Command

 		
 Starter section

 		
 Main argument section

 		
 Option section

 		
 2. Single Symbol Expression

 		
 Escaping @-Symbol Switches

 		
 Python Authoring Mode Tutorial

 		
 Block Python Code Execution

 		
 Referring to variable from Python code

 		
 Remove unwanted newlines

 		
 Referring to functions from Python code

 		
 Python functions with multiple arguments

 		
 Inline Python Code Evaluation

 		
 Inline Python code with function call

 		
 Special Symbol Commands

 		
 Special Commands: For and If

_images/Document.png
Top-Level Document (special case of FragmentSeq)

. non-empty string .

not containing "@" symbol

one element of children

one element of children

_images/FragmentSeq.png
FragmentSeq

#4 1y

n hashes followed by a left brace a right brace followed by n hashes

non-empty string
containing neither "@" symbol
nor [a right brace followed by n hashes]

one element of children
one element of children

_static/minus.png

_images/Command.png
Command

single symbol codepoint

(Unicode classes Ps, Pe, Pi, Pf,
Pd, Po, Sc, Sk, Sm, So)

next token begins with
either an identifier or [at least
zero hashes followed by a bar]?

phrase := parsed symbol

in previous step, Y
the parsed text
